Please also check our google scholar pages and arxiv for
latest works
2019
- On Exact Computation with an Infinitely Wide Neural Net. NeurIPS 2019 spotlight (Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang)
- Implicit Regularization in Deep Matrix Factorization. NeurIPS 2019 spotlight (Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo)
- Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets. NeurIPS 2019 (Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Sanjeev Arora, Rong Ge)
- Provably
Efficient Q-learning with Function Approximation via
Distribution Shift Error Checking Oracle. NeruIPS
2019 (Simon S. Du, Yuping Luo, Ruosong Wang, Hanrui Zhang)
- Online Sampling from Log-Concave Distributions. NeurIPS 2019 (Holden Lee, Oren Mangoubi, Nisheeth K. Vishnoi)
- A Theoretical Analysis of Contrastive Unsupervised Representation Learning. ICML 2019 (Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, Nikunj Saunshi)
- Fine-Grained
Analysis of Optimization and Generalization for
Overparameterized Two-Layer Neural Networks. ICML
2019 (Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li,
Ruosong Wang)
- Width Provably Matters in Optimization for Deep Linear Neural Networks. ICML 2019 (Simon S. Du, Wei Hu)
- Efficient
Full-Matrix Regularization. ICML 2019 (Naman
Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan
Singh, Cyril Zhang, Yi Zhang)
- A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks. ICLR 2019 (Sanjeev Arora, Nadav Cohen, Noah Golowich, Wei Hu)
- Theoretical
Analysis of Auto Rate-Tuning by Batch Normalization.
ICLR 2019 (Sanjeev Arora, Zhiyuan Li, Kaifeng Lyu)
- Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks. ICLR 2019 (Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LuCun, Nathan Srebro)
- Algorithmic
Framework for Model-based Deep Reinforcement Learning
with Theoretical Guarantees. ICLR 2019 (Yuping Luo,
Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell,
Tengyu Ma)
- Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity. AISTATS 2019 (Simon S. Du, Wei Hu)
- Harnessing
the Power of Infinitely Wide Deep Nets on Small-data
Tasks. (Sanjeev Arora, Simon S. Du, Zhiyuan Li,
Ruslan Salakhutdinov, Ruosong Wang, Dingli Yu)
- A Simple Saliency Method That Passes the Sanity Checks. (Arushi Gupta, Sanjeev Arora)
- Learning
Self-Correctable Policies and Value Functions from
Demonstrations with Negative Sampling. (Yuping Luo,
Huazhe Xu, Tengyu Ma)
- Calibration,
Entropy Rates, and Memory in Language Models. (Mark
Braverman, Xinyi Chen, Sham M. Kakade, Karthik Narasimhan,
Cyril Zhang, Yi Zhang)
- Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee. (Wei Hu, Zhiyuan Li, Dingli Yu)
- Extreme
Tensoring for Low-Memory Preconditioning. (Xinyi
Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang)
2018
- Spectral
Filtering for General Linear Dynamical Systems.
NeurIPS 2018 oral (Elad Hazan, Holden Lee, Karan Singh,
Cyril Zhang, Yi Zhang)
- Algorithmic
Regularization in Learning Deep Homogeneous Models:
Layers are Automatically Balanced. NeurIPS 2018
(Simon S. Du, Wei Hu, Jason D. Lee) (Best paper at ICML
2018 Workshop on Nonconvex Optimization)
- Online
Improper Learning with an Approximation Oracle.
NeurIPS 2018 (Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li)
- Neon2: Finding Local Minima via First-Order Oracles. NeurIPS 2018 (Zeyuan Allen-Zhu, Yuanzhi Li)
- A La Carte
Embedding: Cheap but Effective Induction of Semantic
Feature Vectors. ACL 2018 (Mikhail Khodak, Nikunj
Saunshi, Yingyu Liang, Tengyu Ma, Brandon Stewart, Sanjeev
Arora)
- An Analysis of the t-SNE Algorithm for Data Visualization. COLT 2018 (Sanjeev Arora, Wei Hu, Pravesh K. Kothari)
- Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations. COLT 2018 (Yuanzhi Li, Tengyu Ma, Hongyang Zhang) (Best paper)
- Learning Mixtures of Linear Regressions with Nearly Optimal Complexity. COLT 2018 (Yuanzhi Li, Yingyu Liang)
- The Well
Tempered Lasso. ICML 2018 (Yuanzhi Li, Yoram Singer)
- Make the
Minority Great Again: First-Order Regret Bound for
Contextual Bandits. ICML 2018 (Zeyuan Allen-Zhu,
Sebastien Bubeck, Yuanzhi Li)
- An
Alternative View: When Does SGD Escape Local Minima?
ICML 2018 (Robert Kleinberg, Yuanzhi Li, Yang Yuan)
- On the
Optimization of Deep Networks: Implicit Acceleration by
Overparameterization. ICML 2018 (Sanjeev Arora,
Nadav Cohen, Elad Hazan)
- Stronger
Generalization Bounds for Deep Nets via a Compression
Approach. ICML 2018 (Sanjeev Arora, Rong Ge, Behnam
Neyshabur, Yi Zhang)
- A
Compressed Sensing View of Unsupervised Text Embeddings,
Bag-of-n-Grams, and LSTMs. ICLR 2018 (Sanjeev Arora,
Mikhail Khodak, Nikunj Saunshi, Kiran Vodrahalli)
- Not-So-Random Features. ICLR 2018 (Brian Bullins, Cyril Zhang, Yi Zhang)
- Do
GANs Learn the Distribution? Some Theory and Empirics.
ICLR 2018 (Sanjeev Arora, Andrej Risteski, Yi Zhang)
- Operator
Scaling via Geodesically Convex Optimization, Invariant
Theory and Polynomial Identity Testing. STOC 2018
(Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael
Oliveira, Avi Wigderson)
- An homotopy
method for Lp regression provably beyond
self-concordance and in input-sparsity time. STOC
2018 (Sebastien Bubeck, Michael B. Cohen, Yin Tat Lee,
Yuanzhi Li)
- Sparsity,
variance and curvature in multi-armed bandits. ALT
2018 (Sebastien Bubeck, Michael B. Cohen, Yuanzhi Li)
- An Instance Optimal Algorithm for Top-k Ranking under the Multinomial Logit Model. SODA 2018 (Xi Chen, Yuanzhi Li, Jieming Mao)
- Linear Algebraic Structure of Word Senses, with Applications to Polysemy. TACL 2018 (Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, Andrej Risteski)
- Gradient Descent Learns Linear Dynamical Systems. JLMR, 19(29):1−44, 2018. (Moritz Hardt, Tengyu Ma, Benjamin Recht)
2017
- Convergence
Analysis of Two-layer Neural Networks with ReLU
Activation. NIPS 2017 (Yuanzhi Li, Yang Yuan)
- On the Optimization Landscape of Tensor decompositions. NIPS 2017 (Rong Ge, Tengyu Ma) (Best paper in the NIPS 2016 Workshop on Nonconvex Optimization for Machine Learning: Theory and Practice)
- Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. NIPS 2017 spotlight (Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li)
- Much Faster Algorithms for Matrix Scaling. FOCS 2017 (Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, Avi Wigderson)
- First
Efficient Convergence for Streaming k-PCA: a Global,
Gap-Free, and Near-Optimal Rate. FOCS 2017 (Zeyuan
Allen-Zhu, Yuanzhi Li)
- Generalization and Equilibrium in Generative Adversarial Nets (GANs). ICML 2017 (Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang)
- Near-Optimal Design of Experiments via Regret Minimization. ICML 2017 (Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, Yining Wang)
- Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster Matrix Multiplicative Weight Updates. ICML 2017 (Zeyuan Allen-Zhu, Yuanzhi Li)
- Faster Principal Component Regression and Stable Matrix Chebyshev Approximation. ICML 2017 (Zeyuan Allen-Zhu, Yuanzhi Li)
- Doubly
Accelerated Methods for Faster CCA and Generalized
Eigendecomposition. ICML 2017 (Zeyuan Allen-Zhu,
Yuanzhi Li)
- Differentially Private Clustering in High-Dimensional Euclidean Spaces. ICML 2017 (Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, Hongyang Zhang)
- Provable Alternating Gradient Descent for Non-negative Matrix Factorization with Strong Correlations. ICML 2017 (Yuanzhi Li, Yingyu Liang)
- Provable Learning of Noisy-or Networks. STOC 2017 (Sanjeev Arora, Rong Ge, Tengyu Ma, Andrej Risteski)
- A Simple but Tough-to-Beat Baseline for Sentence Embeddings. ICLR 2017 (Sanjeev Arora, Yingyu Liang, Tengyu Ma)
- Identity Matters in Deep Learning. ICLR 2017 (Moritz Hardt, Tengyu Ma)
- Diverse
Neural Network Learns True Target Functions. AISTAT
2017 (Bo Xie, Yingyu Liang, Le Song)
- Mapping
Between Natural Movie fMRI Responses and Word-Sequence
Representations. Neuroimage 2017 (Kiran Vodrahalli,
Po-Hsuan Chen, Yingyu Liang, Janice Chen, Esther Yong,
Christopher Honey, Peter Ramadge, Ken Norman, Sanjeev
Arora)
2016
- RAND-WALK: A latent variable generative model approach to word embeddings. TACL 2016 (Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, Andrej Risteski)
- A
Non-generative Framework and Convex Relaxations for
Unsupervised Learning. NIPS 2016 (Elad Hazan,
Tengyu Ma)
- Matrix
Completion has No Spurious Local Minimum. NIPS 2016
(Rong Ge, Jason Lee, Tengyu Ma) (Best Student Paper)
- Polynomial-time
Tensor Decompositions with Sum-of-squares. FOCS 2016
(Tengyu Ma, Jonathan Shi, David Steurer)
- Communication
Lower Bounds for Statistical Estimation Problems via a
Distributed Data Processing Inequality. STOC 2016
(Mark Braverman, Ankit Garg, Tengyu Ma, Huy L. Nguyen,
David P. Woodruff)
- LazySVD: Even
Faster SVD Decomposition Yet Without Agonizing Pain.
NIPS 2016 (Zeyuan Allen-Zhu, Yuanzhi Li)
- Algorithms
and Matching Lower Bounds for Approximately-Convex
Optimization. NIPS 2016 (Yuanzhi Li, Andrej
Risteski)
- Approximate
maximum entropy principles via Goemans-Williamson with
applications to provable variational methods. NIPS
2016 (Yuanzhi Li, Andrej Risteski)
- Recovery
Guarantee of Non-negative Matrix Factorization via
Alternating Updates. NIPS 2016 (Yingyu Liang,
Yuanzhi Li, Andrej Risteski)
- Communication-Efficient
Distributed Kernel Principal Component Analysis. KDD
2016 (Maria-Florina Balcan, Yingyu Liang, Le Song, David
Woodruff, Bo Xie)
- On routing
disjoint paths in bounded treewidth graphs. SWAT
2016 (Alina Ene, Matthias Mnich, Marcin Pilipczuk, Andrej
Risteski)
- How to
calculate partition functions using convex programming
hierarchies: provable bounds for variational methods.
COLT 2016 (Andrej Risteski)
- Simple,
Efficient, and Neural Algorithms for Sparse Coding.
COLT 2016 (Sanjeev Arora, Rong Ge, Tengyu Ma, Ankur
Moitra. )
- Recovery
Guarantee of Weighted Low-Rank Approximation via
Alternating Minimization. ICML 2016 (Yingyu Liang,
Yuanzhi Li, Andrej Risteski)
- Provable
Algorithms for Inference in Topic Models. ICML 2016
(Sanjeev Arora, Rong Ge, Frederic Koehler, Tengyu Ma,
Ankur Moitra)
- Scalable
Influence Maximization for Multiple Products in
Continuous-Time Diffusion Networks. JMLR 2016 (Nan
Du, Yingyu Liang, Maria-Florina Balcan, Manuel
Gomez-Rodriguez, Hongyuan zha, Le Song)
- Clustering
Under Perturbation Resilience. SICOMP 2016
(Maria-Florina Balcan, Yingyu Liang)
2015
- Why are deep
nets reversible: A simple theory, with implications for
training. (Sanjeev Arora, Yingyu Liang, Tengyu Ma)
- Online
Learning of Eigenvectors. ICML 2015 (Dan Garber,
Elad Hazan, Tengyu Ma)
- Decomposing
Overcomplete 3rd Order Tensors using Sum-of-Squares
Algorithms. RANDOM/APPROX 2015 (Rong Ge, Tengyu Ma)
- Label optimal
regret bounds for online local learning. COLT 2015
(Pranjal Awasthi, Moses Charikar, Kevin A. Lai, Andrej
Risteski)
- Simple,
efficient and neural algorithms for sparse coding.
COLT 2015 (Sanjeev Arora, Rong Ge, Ankur Moitra)
- Sum-of-Squares
Lower Bounds for Sparse PCA. NIPS 2015 (Tengyu Ma,
Avi Wigderson)
- On some
provably correct cases of variational inference for
topic models. NIPS 2015 (Pranjal Awasthi, Andrej
Risteski)
- Scale Up
Nonlinear Component Analysis with Doubly Stochastic
Gradients. NIPS 2015 (Bo Xie, Yingyu Liang, Le Song)
- Distributed
Frank-Wolfe Algorithm: A Unified Framework for
Communication-Efficient Sparse Learning. SDM 2015
(Aurelien Bellet, Yingyu Liang, Alireza Bagheri Garakani,
Maria-Florina Balcan, Fei Sha)
2014
- Provable
bounds for learning some deep representations. ICML
2014. (Sanjeev Arora, Aditya Bhaskara, Rong Ge, Tengyu
Ma.)
- New
algorithms for learning overcomplete and incoherent
dictionaries. COLT 2014 (Sanjeev Arora, Rong Ge,
Ankur Moitra)
- On
Communication Cost of Distributed Statistical Estimation
and Dimensionality. NIPS 2014 (Ankit Garg, Tengyu
Ma, Huy Nguyen)
- Skeletal
rigidity of phylogenetic trees. DAM 2014 (Howard
Cheng, Satyan L. Devadoss, Brian Li, Andrej Risteski)
- Robust
Hierarchical Clustering. JMLR 2014 (Maria-Florina
Balcan, Yingyu Liang)
- Scalable Kernel
Methods via Doubly Stochastic Gradients. NIPS 2014
(Bo Dai, Xie Dai, Niao He, Yingyu Liang, Anant Raj,
Maria-Florina Balcan, Le Song)
- Learning
Time-Varying Coverage Functions. NIPS 2014 (Nan Du,
Yingyu Liang, Maria-Florina Balcan, and Le Song)
- Improved
Distributed Principal Component Analysis. NIPS 2014
(Maria-Florina Balcan, Yingyu Liang, Vandana
Kanchanapally, David Woodruff)
- Influence
Function Learning in Information Diffusion Networks.
ICML 2014 (Nan Du, Yingyu Liang, Maria-Florina Balcan, Le
Song)
2013
- A practical
algorithm for topic modeling with provable guarantees.
ICML 2013 (Sanjeev Arora, Rong Ge, Yoni Halpern, David
Mimno, Ankur Moitra, Yichen Wu, Michael Zhu)
- Distributed
k-Means and k-Median Clustering on General Topologies.
NIPS 2013 (Maria-Florina Balcan, Steven Ehrlich, Yingyu
Liang)
- Modeling
and Detecting Community Hierarchies. SIMBAD 2013
(Maria-Florina Balcan, Yingyu Liang)
- Efficient
Semi-supervised and Active Learning of Disjunctions.
ICML 2013 (Maria-Florina Balcan, Christopher Berlind,
Yingyu Liang, Steven Ehrlich)
2012
- Provable ICA with unknown Gaussian noise, with implications for Gaussian mixtures and autoencoders. NIPS 2012 (Sanjeev Arora, Rong Ge, Ankur Moitra, Sushant Sachdeva)
- Learning topic models: going beyond SVD. FOCS 2012 (Sanjeev Arora, Rong Ge, Ankur Moitra)
- Finding overlapping communities in a social network: towards a rigorous approach. EC 2012 (Sanjeev Arora, Rong Ge, Sushant Sachdeva, Grant Schoenebeck)
- Computing a
Nonnegative Matrix Factorization: Provably. STOC
2012 (Sanjeev Arora, Rong Ge, Ravi Kannan, Ankur Moitra.)