1.(Partial derivative refresher) In the lectures when we looked at the results of applying regression (e.g., to sentiment classification) we implicitly assumed that the “importance” of the i'th feature

is the weight assigned to it by the solution. A formal way to think

Opening the black box: Toward

mathematical
deep

http://www.cs.princeton.edu/~arora/
Group website: unsupervised.princeton.edu
Blog: www.offconvex.org

Twitter: @prfsanjeevarora

Theory of Deep Learning

understanding of
earning

Sanjeev Arora
Princeton University

(Funding: NSF, Simons Foundation, ONR,
Schmidt Foundation, Amazon Research,
Mozilla Research, SRC/JUMP)


http://www.cs.princeton.edu/~arora/

Deep learning in the news

N Chemical shi i Regulating products that
" NMR samples pp.s5 & target gut microbiomes 5.9
Robotic observatory makes A wet route to Human noise plagues S oor
fast work of astronomy .47 methanol 7. 525 protected areas .1 scencemagors
[ ] AVAAAS

Vitamin C and cancer cell In search of stem cells
metabolism pp. 1317 s 1391 p.1319

THE INTERNA

s10
11 DECEMBER 2015
r——

AVAAAS

TRANSFORMS
SCIENCE

At last — a compu
can beat a champic

EPIOEMOLOGY
DATA
BREAK

oiss

Machine
intelligence
Al learns to read and
write letters p.1332

6 perfect translation

4 neural (GNMT)

phrase-based (PBMT)

Translation quality
w

English  English English  Spanish  French Chinese
> > > >

> >
Spanish  French Chinese  English  English  English

Translation model

Theory of Deep Learning



This talk

e Some difficult mathematical questions about deep learning (and why
they are difficult)

* Examples of mismatch between traditional frameworks (learning
theory, optimization) and deep learning phenomena

 Survey of some understanding (and new puzzles) from recent years.

* Wrap up



Main idea of ML: Curve fitting (causs, . 1800)

Phillips curve (1958):

o Machine Learning = Surface fitting,

Inflation o with many more variables

R*=0.73166

Unemployment ’

Theory of Deep Learning 4



Statistical issues (common to all data science)

Datapoint = (input, label)

D: Distribution on datapoints

/If test error >> training error,
model has “overfitted”
(“failed to generalize”)
-
Random sample Random sample (“Holdout set”) to use
used for training as proxy for estimating trained model’s error
(“training set”) on full distribution. (AKA Test error)

Theory of Deep Learning 5



(“Deep” = multilayered)

Deep Nets*

9: { M], MQ,.. }

= =
S Output
Input Matrix S Matrix = Matrix P
X » M]x =3 x2 M2x3 S X, °° .» fo(X,)
M, 2 M, 2 M,
= =

“ReLU Nonlinearity”: Given a vector, turn all negative entries to zero.
M

1 . .
Training data: {(X;® Y0): i=1,.,N} £(0) = 7 Z(f9 (X(Z)) _ Y(’&))Z
1=1

(Loss function)

(*Highly simplistic: could have “convolution”, “bias”, “skip connections”, other loss fns etc.)

Theory of Deep Learning 6



Deep Nets (more formal)
0: { M, M,,.. }

= =
S Output
Input Matrix S Matri S Matri p
MX. 5| X atrix | M X, | = atrix ...-
X, » M, g o, 273 | 3 X; " fa(X;)
=] =]

“Nonlinearity”: Given a vector, output same vector but negative entries turned to zero.
N

Training data: {(X, 0 Y0): i=1,..,N} 5(6’) — Z(f9 (Xl(z)) _ Y(i))Q

1=1
Algorithm: Gradient Descent (Move O in direction opposite to gradient of loss —V (/)

Backpropagation computes gradient; clever application of chain rule [Werbos’77, Rumelhart et al’84]

Differential computing paradigm

f 7




Deep Net (simplistic!)

Input » Action 1 »

Action 2

Output depends
on large bank of
parameters
(“tunable knobs”)

# ¢ oo # Action N # Output

O for “Dog”
1 for “Cat”

Gradient descent Training: Using large training
set of labeled inputs, adjust tunable knobs

to make the Net’s output match the labeled
outputs as closely as possible.

Theory of Deep Learning



Mystery 1: Gradient descent (GD) quickly makes
training loss zero

Loss .l ' - 9(t+1) — H(t) o 77v9(€)
Function . P 4 | ( . ’9 . ’
5 - -~ n = step size/”learning rate”)
' e Flies against experts’ —
%/ intuitions! \é
L”/’\/\/\/N
CONVEX NONCONVEX
A @ J(0) ’ , J(0)
7 ? 7 ?

Theory of Deep Learning 9



NO
Mystery 2: , Overfitting

. . verparametrized nets
Rule of thumb: Overcomplicated explanations (way more parameters

overfit tf) jcralnlng data and do not genera% than data points)
to explaining new data. outperform smaller

Theory of Deep Learnin



Many other mysteries, some are later in the talk



Hurdles for theory

Loss function is currently a black box to mathematics
since it depends on complicated training data
(“dog vs cat”, “English to German”, etc.?)

No fruitful theory is possible for blackbox (ie fully general) nonconvex
function! (No efficient algorithm to find optima, let alone those that generalize.)

Theory of Deep Learning 12



Min £(0) for some loss function £() ; solve as fast as possible

!

Unclear: Is optimization even the right language
for understanding current deep learning?

Old debate: Does the brain (“spiking neurons in a vat of
chemicals...”) amount to optimization of an objective?

Suggestion today: Deep net training is also
imperfectly captured by value of the objective.

Multiple minima! Any tweak to training => different trajectories, with
different solution. Trajectory properties determine generalization!

[“Implicit bias of gradient descent” [Neyshabur et al’17, Gunasekar et al’17])




Agenda for theory: Open the black box

Gradually analyze more and more complicated deep nets,
and see if theory can explain these mysteries...

Example: Understand trajectory of GD for 3-layer nets on a simple
dataset. Understand process of reaching zero loss and good generalization

Theory of Deep Learning 14



Agenda for theory: Open the black box

Gradually analyze more and more complicated deep nets,
and see if theory can explain these mysteries...

CAVEAT: Evolution of systems of tens of millions of parameters notoriously
hard to analyze in math (e.g., famous unsolved questions in PDEs,
dynamical systems, complex systems...)

Theory of Deep Learning
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Vignette 1: Training of infinitely wide* Deep Nets

(“GD picks a meaningful solution out of infinitely many possibilities”)

(* Motivations: “Thermodynamic limit” + “Gaussian Process View of DL” )

Paper 1: On Exact Computation with an Infinitely Wide Net (A., Simon Du, Wei Hu, Zhiyuan Li, Russ Salakhutdinoy,
Ruosang Wang NeurlPS‘19)

Inspired by works on overparametrized nets [Li, Liang’18], [Allen-Zhou, Li’18] and infinite fully connected nets [Jacot
et al'18]

Optimzation View Insufficient for DL



)

f(0, x) Dataset: UCI Primary Tumor
(multiclass; 17-dimensional input, # training samples= 339)

Want to train fully connected 5-layer net on it. Infinitely wide!

Means: Keep input and output layer fixed, but allow width of inner layers — oo

(initialize with suitably-scaled Gaussians so expected node value is equal at all layers)

Too expressive! Will overfit to training data.

X; (Arbitrarily wide 2-layer nets can represent every finite function, so
# of zero-loss solutions — ©0)
Plus, infeasible to train!

Test accuracy: 51.5 For CIFAR10, infinite convolutional net has

accuracy 77% (vs 83 % for corresp. finite net)

(Random Forest: 48.5, Gaussian Kernel: 48.4)

Optimzation View Insufficient for DL



Reminder: Origina

|(l

thermodynamic limit”

Maxwell-Boltzmann distribution

f(v) v = (

m
2wkT

3/2 _
) e

’I’I’I/l)2

2kT d3’v,

Optimzation View Insufficient for DL
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10

20 30 40 50

Frequency Distribution of Speeds

~ Theoretical Prediction

mmm Measured

timestep = 0

(credit:
Wikipedia)



Neural Tangent Kernels NTKs (and Convolutional NTKs)
[Jacot et al’18][Arora et al’19]

Following are equivalent for any finite dataset: (i) infinite-width fully connected nets
(resp., Conv Nets) trained with GD with infinitesimally small learning rate
(ii) Kernel |, regression wrt NTK (resp., CNTK)

f(0, x)

s AN

Thm[A. et al Neurips’19] Efficient and
GPU-friendly algorithm for computing
CNTK exactly. (Dynamic Programming!) ] 0

M

»
»

» Can compute exact performance of
!
infinite-width net on finite datasets. AN —

Distribution of
values at a layer




Previous slide unpacked (Kernel linear regression/SVM reminder)

Kernel trick: |, regression possible if / . \
can compute < ®(x;), P(x,) > forany Neural Tangent Kernel /1"
given input pair x4, X, ,
Each coordinate of ®(x) corresponds to

B . parameter w in the net.
Reproducing

Kernel d(x - .
Hilbert Space” t( ) KCorrespondmg entry is d(output)/odw att = 0/
To do regression wrt H* only need algorithm to
Input x

compute < ®(x;), P(x,) > forany
given input pair x4, X,
(e.g., polynomial kernel, Gaussian kernel,..)

(our algorithm does that efficiently)

Optimzation View Insufficient for DL



[A., Du, Hu, Li, Salakhutdinov, Wang, Yu ICLR’20 ]

Classifier Friedman Rank | Average Accuracy P90 P95 PMA
— NTK 28.34 81.95%+14.10% | 88.89% | 72.22% | 95.72% +5.17% | On 90 classic UCI
NN (He init) 40.97 80.88%+14.96% | 81.11% | 65.56% | 94.34% +7.22% datasets
NN (NTK init) 38.06 81.02%+14.47% 85.56% 60.00% 94.55% +£5.89% (<5000 samples)
‘ RF 33.51 81.56% £13.90% 85.56% 67.78% 95.25% 45.30%
Gaussian Kernel 35.76 81.03% =+ 15.09% | 85.56% | 72.22% 94.56% +8.22% [Processed as in
Polynomial Kernel 38.44 78.21% £ 20.30% | 80.00% | 62.22% | 91.29% +18.05% Fernando-Delgadez’14]
(Li, Wang, Hu, Yu, Salakhutdinov, Arora, Du, Manuscript 2019] Open: Fully

understand
generalization for
kernels !

Souped-up CNTK that rivals AlexNet on CIFAR10 (89%
accuracy; best kernel that was not trained on data)




“Netflix Challenge” (~2007)
MOVIES

NOW YOU g

%

Bob

e

0 Alice ? 5 4 ?

2,

- Joe ? 5 ? ?
Sam 5 ? ? ?

Vignette 2: Solving matrix completion via deep linear nets
(“GD is amazing even in simple models, but exactly formalizing its effect can be tricky.”)

“Implicit regularization in deep matrix factorization” [A., Nadav Cohen, Wei Hu, Yuping Luo, NeurlPS 2019]

Optimzation View Insufficient for DL




Matrix Completion

Unknown low rank n X n matrix M. Entries revealed in a random subset () of locations
Goal: Recover M.

[Srebro et al’05] Find matrix with best squared error and smallest nuclear norm (convex!)

2 M|, = sum of singular values of M
> (M — bij)? + A[M]. Ml = sum of singular . ,
< Low rank: “# nonzero singular values is small
17€8) —
regularizer

[Candes, Recht’10]: This is statistically “optimal” !

[Gunasekar et al’17] Find M as product of 2 matrices (depth 2 linear net); no regularizer!

Z (WaW1)ijeq — b,b-j)2 Conjecture (Gunasekar et al.’18): In depth 2
linear nets GD implicitly minimizes |M|,

ij€Q

Infinitely many solns, but empirically GD finds soln as good as nuc. norm minimization!

Theory of Deep Learning 23



Recontruction

error

Deep matrix factorization (= multilayer linear nets) Mo

10-1 1
1073 1

103

1077

[A., Cohen, Hu, Luo, NeurlIPS'19]

Z (WNWy_1- WoW1)ijeq — bij)?

15 €82 “lgnore domain knowledge trust backprop!” M,

Good news 1: Empirically, solves matrix completion S _

. _ . [Initialization: Small random;
better (ie with fewer revealed entries) than Nuclear | carning rate: very small)
Norm Minimization! (Also mathematical explanation..)

Depth 2 Depth 3 Depth 4
i e %] 1071 4 1071
~— =
10_3 1 10-3 i
& - "“"4‘4’ & o = —
1073 - 1073 -
—e— |r=0.001
4 |r=0.0003
T T T T 1077 + T T T 1077 4+ T T T
10°3 1074 10°3 102 1073 1074 10-3 102 10°3 1074 10-3 102

Scale of initialization Optimzation View Insufficient for DL




Sketch of mathematical analysis My
M
1. Show that singular values and sing. vectors of end-to-end
matrix M are analytic functions of time t. M; | _

2. Theorem 3. The signed singular values of the product matrix W evolve by.

. 9 1-1/N T

or(t) = —N - (ar(tu\-<V€(W (1), u,(t)v, (£)) ,

“Rich get richer”; promotes low rank Depth 2 Depth 3

(Interpretation: GD builds up matrix M one Z N
singular vector at a time, not all at once. »

Building up stops once gradient of loss goes to zero.)

(Paper presents evidence that Gunasekar et al conjecture is false) @ o= o o o g o0 os 20 e 2
Optimzation View Insufficient for DL Evolution of sing. values W/ time
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Vignette 3: Exponentially increasing learning rate works for
deep learning.

[Zhiyuan Li and A., ICLR’20]
AU 9l _ vy (0)

(n = step size/”learning rate”)

Optimzation View Insufficient for DL



Learning rate in traditional optimization

Learning rate

0.10 —— learning rate W{t+1} — W{t} _ ,’7 . VL(W{t})
Standard schedule: Start with some l.r.; decay over time.
Nl _\_\l (extensive literature in optimization justifying this)

20 40 60 80 100
epoch

Result 1 (empirical): Possible to train today’s deep architectures, while growing I.r.
exponentially (i.e., at each iteration multiply by (1 + ¢) for some ¢ > 0)

Result 2 (theory): Mathematical proof that nets produced by existing training schedules
can also be in obtained (in function space*) via exponential l.r. training schedules.

(* In all nets that use batch norm [loffe-Szegedy’13] or any other layer normalization scheme.)



Learning Rate

/

General training algorithm
0, =0,_, — Tt Ut & 18

for deep learning today

Ay
Uy :/7’07:—1 + Vo (Lt(é’tl) + t2 - ||9t1||2)

Momentum £, regularizer (aka Weight decay)

Thm (informal): For nets w/ batch norm or layer norm, following is equivalent
to above : weight decay 0, momentum ¥, and LR schedule 1, = noa =21
where a is nonzero root of

2 —(1+v—Ap)z+~v =0,

(proof uses: a trajectory-based analysis + scale-invariance created due to batch-norm)

fo = fco, Ve >0 ‘ veL‘e:eo = Cv@L}e:ceo’fO" any ¢ >0



Run GD with WD for a step: GDP(O = (p@ —nVLi(0),n); (p=1—2n)

GDpzﬂgonoGDtoH .“ .‘.

Dy l'lporlp

Theorem: GD + WD + constant LR= GD + Exp LR.
pt qp p p _p?t p- p* p!
M oMf oGD?  o-0GD? =M. oGDy_qoM: o--0GD;oll) GDg oIl

0,
ne ': = B
s

Proof:

lg, 19, 9,
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Vighette 4: How to allow deep learning on your data without
revealing your data.

Instance-hiding schemes for private distributed deep learning [Huang, Song, Liand A., ICML20]

Optimzation View Insufficient for DL



Preamble: Mixup data augmentation [zhangetai 18]

|ldea : teach deep models to behave linearly on training data

o Images are vectors in [-1,1]¢, labels are 1-hot vectors in {0,1}¢, where c = # of classes

e A€z (0,1), mixed image: Ax, + (1-A)x;,  mixed label: )\y1 + (1-A\)y,
0.6 x +0.4 =
X
(0,1,0,0) (0,0,0,1) (0, 0.6, 0, 0.4) o
Cat Car Cat Car Takeaway: Training
Training with only these mixed data points data is malleable!

gives better final accuracy on normal images.



Federated learning with private data

Hospital 1

Central server

oo
00 |

Hospital 3

\I)fl?.(l/
22U

Model

Multiple parties with private data (e.g. hospitals) want to
collaboratively train a deep model.

Federated learning [McMahan et al 16]: Server shares
current model with the parties. They share model
updates (gradients) using their data.



Federated learning with private data

Hly(EE Multiple parties with private data (e.g. hospitals) want to
_P_FH'_]__ g collaboratively train a deep model.
—
0000 2l 0000 Federated learning [McMahan et al 16]: Server shares
oooo | < gooo | <
fafuls T oooo | = current model with the parties. They share model
il . updates (gradients) using their data.
Hospital 1 Model Hospital 3
. v
Model Model
N e
o min
XTI %E%
I X
i /

Central server Model



Private Distributed Learning

Federated learning [McMahan et al 16]: Server shares
oooo current model with the parties. They share model
oooo | <
o0 — updates (gradients) using their data.
oo Hospital 2 oo Approach 1: Differential privacy (each party
DO00 | ¢ pooo | ¢  shares model gradients computed using their data, but
_P.F-HI_]. .’ T _P_ID-HI_]_ after adding noise (“DP”).
T—— = I Hosoital 3 - Pros: Provable Privacy guarantees
ooP! f\ Mode /,Osp' ° Cons: Large accuracy drop due to added noise.
Model Model
S /
= Approach 2: Secure Multiparty Computation using cryptography.
Ceee 1IN (Yao’82, BGW’87)
_% >§ : Pros: Strongest privacy guarantees.
Y >7< ' Cons: High computational overhead; infeasible for modern deep
Central server Model learning.



Needed: An encryption method for data
that does not interfere with deep learning

(Usual crypto lifts arithmetic operations to
finite fields or lattices)

Take inspiration from Mixup??

Theory of Deep Learning
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Inspiration : Simple addition on datapoints can
help to obscure them.

. k-VECTOR SUBSET SUM [Bhattacharyya et al
11].

o A set of public N vectors vy, -+, V\E
Rd
o Picks k secret indices iy, -, I, €

{1,..N} and releases }v;
o Exponential Time Hypothesis —»

finding iq, -*-, i, requires = N¥2time
[Abboud and Lewi 13]
B Kk =4is already pretty hard



InstaHide: Idea

Mix with images [ one-time private key J
from public dataset that randomly flips sign

To encrypt private E

flip pixel signs _—
randomly - ogh )
0.6 x +0.4 X — b g
(0,1,0,0) (0,1,0,0) (.0.,-1, o, 6)
Cat Cat Cat
-
- - .
Private ~—= Public dataset 1. Public - off-the-shelf; no
= train set —=J (large) special preparation

H ‘ . 2. Large — gives more security
i B S (remember Vector k-sum)




InstaHide: Full description (think of k as 4)

Mix k/2 training images with k/2 public images, followed by pixelwise random sign flip

flip pixel signs
randomly

»
»

(0,1, 0,0) (0,0,0,1)
Cat Car (0,14,0,4;)

Cat  Car

k
Conjecture: Extracting any information about training images requires > min {NE ) Zd} time
(N = size of public dataset, d= # pixels)

Note: Secret key for encryption = (Choice of images used for mixing, random sign mask)
Never reused during training



Blog: www.offconvex.org, Twitter: @prfsanjeevarora

Concluding thoughts

* Understanding why and how deep learning works is a
new frontier for mathematics.

e Attempts to “open the black box” leads to new insights and new methods.
(e.g., exponentially increasing learning rates, InstaHide)

e |t will be a fun ride!

In der Mathematik gibt

es kein ignorabimus
THANK YOU!! D. Hilbert

7/10/2018 Theoretically understanding deep learning
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