
Opening the black box: Toward
mathematical understanding of

deep learning

(Funding: NSF, Simons Foundation, ONR,
Schmidt Foundation, Amazon Research,
Mozilla Research, SRC/JUMP)

Sanjeev Arora
Princeton University

Theory of Deep Learning 1

http://www.cs.princeton.edu/~arora/
Group website: unsupervised.princeton.edu
Blog: www.offconvex.org
Twitter: @prfsanjeevarora

1.(Partial derivative refresher) In the lectures when we looked at the results of applying regression (e.g., to sentiment classification) we implicitly assumed that the “importance” of the i’th feature is the weight assigned to it by the solution. A formal way to think about the importance of the variable is via the partial derivative

http://www.cs.princeton.edu/~arora/

Deep learning in the news

2Theory of Deep Learning

This talk

• Some difficult mathematical questions about deep learning (and why
they are difficult)

• Examples of mismatch between traditional frameworks (learning
theory, optimization) and deep learning phenomena

• Survey of some understanding (and new puzzles) from recent years.

• Wrap up

Theory of Deep Learning 3

Main idea of ML: Curve fitting (Gauss, c. 1800)

Phillips curve (1958):

Inflation

Unemployment

Machine Learning = Surface fitting,
with many more variables

Theory of Deep Learning 4

Statistical issues (common to all data science)

Datapoint = (input, label)

D: Distribution on datapoints

Random sample
used for training
(“training set”)

Random sample (“Holdout set”) to use
as proxy for estimating trained model’s error
on full distribution. (AKA Test error)

Theory of Deep Learning 5

If test error >> training error,
model has “overfitted”
(”failed to generalize”)

Deep Nets*

Input
X

Matrix
M1

Matrix
M2

Matrix
M3

M1X X2 M2X3

Nonlinearity

Nonlinearity

X3 . . . Output
f𝛉(X1)

“ReLU Nonlinearity”: Given a vector, turn all negative entries to zero.

(*Highly simplistic: could have “convolution”, “bias”, “skip connections”, other loss fns etc.)

𝛉: { M1, M2,.. }

Training data: {(X1
(i), Y(i)): i=1,..,N}

(Loss function)

(“Deep” = multilayered)

Theory of Deep Learning 6

`(✓) =
1

M

MX

i=1

(f✓(X
(i))� Y (i))2

Deep Nets (more formal)

Input
X1

Matrix
M1

Matrix
M2

Matrix
M3

M1X1 X2 M2X3

Nonlinearity

Nonlinearity

X3 . . . Output
f𝛉(X1)

“Nonlinearity”: Given a vector, output same vector but negative entries turned to zero.

𝛉: { M1, M2,.. }

Algorithm: Gradient Descent (Move q in direction opposite to gradient of loss
Backpropagation computes gradient; clever application of chain rule [Werbos’77, Rumelhart et al’84]

Training data: {(X1
(i), Y(i)): i=1,..,N} `(✓) =

NX

i=1

(f✓(X
(i)
1)� Y (i))2

Differential computing paradigm
Theory of Deep Learning 7

�r✓(`)

Deep Net (simplistic!)

Input Action 1 . . . OutputAction 2 Action N

0 for “Dog”
1 for “Cat”

Gradient descent Training: Using large training
set of labeled inputs, adjust tunable knobs
to make the Net’s output match the labeled
outputs as closely as possible.

Theory of Deep Learning 8

Output depends
on large bank of
parameters
(“tunable knobs”)

Mystery 1: Gradient descent (GD) quickly makes
training loss zero

CONVEX NONCONVEX

Flies against experts’
intuitions!

Loss
Function

Theory of Deep Learning 9

✓(t+1) ✓(t) � ⌘r✓(`)

(⌘ = step size/”learning rate”)

Mystery 2: Overfitting

Rule of thumb: Overcomplicated explanations
overfit to training data and do not “generalize”
to explaining new data.

Overparametrized nets
(way more parameters
than data points)
outperform smaller
models

NO

Theory of Deep Learning 10

Theory of Deep Learning 11

Many other mysteries, some are later in the talk

Hurdles for theory
Loss function is currently a black box to mathematics
since it depends on complicated training data
(“dog vs cat”, “English to German”, etc.?)

Theory of Deep Learning 12

No fruitful theory is possible for blackbox (ie fully general) nonconvex
function! (No efficient algorithm to find optima, let alone those that generalize.)

Unclear: Is optimization even the right language
for understanding current deep learning?

Min ℓ 𝜃 for some loss function ℓ() ; solve as fast as possible

Old debate: Does the brain (“spiking neurons in a vat of
chemicals…”) amount to optimization of an objective?

Suggestion today: Deep net training is also
imperfectly captured by value of the objective.

Multiple minima! Any tweak to training => different trajectories, with
different solution. Trajectory properties determine generalization!

[“Implicit bias of gradient descent” [Neyshabur et al’17, Gunasekar et al’17])

Agenda for theory: Open the black box

Theory of Deep Learning 14

Gradually analyze more and more complicated deep nets,
and see if theory can explain these mysteries…

Example: Understand trajectory of GD for 3-layer nets on a simple
dataset. Understand process of reaching zero loss and good generalization

Agenda for theory: Open the black box

Theory of Deep Learning 15

CAVEAT: Evolution of systems of tens of millions of parameters notoriously
hard to analyze in math (e.g., famous unsolved questions in PDEs,
dynamical systems, complex systems...)

Gradually analyze more and more complicated deep nets,
and see if theory can explain these mysteries…

Optimzation View Insufficient for DL

Vignette 1: Training of infinitely wide* Deep Nets
(“GD picks a meaningful solution out of infinitely many possibilities”)

(* Motivations: “Thermodynamic limit” + “Gaussian Process View of DL”)

Paper 1: On Exact Computation with an Infinitely Wide Net (A., Simon Du, Wei Hu, Zhiyuan Li, Russ Salakhutdinov,
Ruosang Wang NeurIPS‘19)

Inspired by works on overparametrized nets [Li, Liang’18], [Allen-Zhou, Li’18] and infinite fully connected nets [Jacot
et al’18]

Optimzation View Insufficient for DL

Want to train fully connected 5-layer net on it.

Means: Keep input and output layer fixed, but allow width of inner layers → ∞
(initialize with suitably-scaled Gaussians so expected node value is equal at all layers)

Dataset: UCI Primary Tumor
(multiclass; 17-dimensional input, # training samples= 339)

Too expressive! Will overfit to training data.
(Arbitrarily wide 2-layer nets can represent every finite function, so
of zero-loss solutions → ∞)
Plus, infeasible to train!

Test accuracy: 51.5

(Random Forest: 48.5, Gaussian Kernel: 48.4)

xi

f(𝚹, xi)

𝛉

Infinitely wide!

For CIFAR10, infinite convolutional net has
accuracy 77% (vs 83 % for corresp. finite net)

Optimzation View Insufficient for DL

Reminder: Original “thermodynamic limit”

Maxwell-Boltzmann distribution

(credit:
Wikipedia)

Following are equivalent for any finite dataset: (i) infinite-width fully connected nets
(resp., Conv Nets) trained with GD with infinitesimally small learning rate
(ii) Kernel l2 regression wrt NTK (resp., CNTK)

Neural Tangent Kernels NTKs (and Convolutional NTKs)
[Jacot et al’18][Arora et al’19]

Thm[A. et al Neurips’19] Efficient and
GPU-friendly algorithm for computing
CNTK exactly. (Dynamic Programming!)

Can compute exact performance of
infinite-width net on finite datasets.

xi

f(𝚹, xi)

𝛉

Distribution of
values at a layer

Previous slide unpacked (Kernel linear regression/SVM reminder)

Optimzation View Insufficient for DL

Φ(𝑥)

Input 𝑥

(e.g., polynomial kernel, Gaussian kernel,..)

“Reproducing
Kernel

Hilbert Space”

Kernel trick: l2 regression possible if
can compute < Φ 𝑥! , Φ 𝑥" > for any
given input pair 𝑥!, 𝑥"

Neural Tangent Kernel 𝐻∗:

Each coordinate of Φ 𝑥 corresponds to
parameter 𝑤 in the net.

Corresponding entry is 𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)/𝜕𝑤 at 𝑡 = 0

To do regression wrt 𝐻∗ only need algorithm to
compute < Φ 𝑥! , Φ 𝑥" > for any
given input pair 𝑥!, 𝑥"

(our algorithm does that efficiently)

Classifier Friedman Rank Average Accuracy P90 P95 PMA

NTK 28.34 81.95%±14.10% 88.89% 72.22% 95.72% ±5.17%

NN (He init) 40.97 80.88%±14.96% 81.11% 65.56% 94.34% ±7.22%

NN (NTK init) 38.06 81.02%±14.47% 85.56% 60.00% 94.55% ±5.89%

RF 33.51 81.56% ±13.90% 85.56% 67.78% 95.25% ±5.30%

Gaussian Kernel 35.76 81.03% ± 15.09% 85.56% 72.22% 94.56% ±8.22%

Polynomial Kernel 38.44 78.21% ± 20.30% 80.00% 62.22% 91.29% ±18.05%

Table 1: Comparisons of di↵erent classifiers on 90 UCI datasets. P90/P95: the number of
datasets a classifier achieves 90%/95% or more of the maximum accuracy, divided by the
total number of datasets. PMA: average percentage of the maximum accuracy.

detailed experiment setup, including the choices the datasets, training / test splitting
and ranges of hyperparameters, is described in Appendix A. The code can be found in
https://github.com/LeoYu/neural-tangent-kernel-UCI. We note that usual methods
of obtaining confidence bounds in these low-data settings are somewhat heuristic.

4.1 Overall Performance Comparisons

Table 1 lists the performance of 6 classifiers under various metrics: the three top classifiers
identified in Fernández-Delgado et al. (2014), namely, RF, Gaussian kernel and polynomial
kernel, along with our new methods NTK, NN with He initialization and NN with NTK
initialization. Table 1 shows NTK is the best classifier under all metrics, followed by RF, the
best classifier identified in Fernández-Delgado et al. (2014). Now we interpret each metric
in more details.

Friedman Ranking and Average Accuracy. NTK is the best (Friedman Rank 28.34,
Average Accuracy 81.95%), followed by RF (Friedman Rank 33.51, Average Accuracy
81.56%) and then followed by SVM with Gaussian kernel (Friedman Rank 35.76, Average
Accuracy 81.03%). The di↵erence between NTK and RF is significant (-5.17 in Friedman
Rank and +0.39% in Average Accuracy), just as the superiority of RF is significant com-
pared to other classifiers as claimed in Fernández-Delgado et al. (2014). NN (with either
He initialization or NTK initialization) performs significantly better than the polynomial
kernel in terms of the Average Accuracy (80.88% and 81.02% vs. 78.21%), but in terms of
Friedman Rank, NN with He initialization is worse than polynomial kernel (40.97 vs. 38.44)
and NN with NTK initialization is slightly better than polynomial kernel (38.06 vs. 38.44).
On many datasets where most classifiers have similar performances, NN’s rank is high as
well, whereas on other datasets, NN is significantly better than most classifiers, including
SVM with polynomial kernel. Therefore, NN enjoys higher Average Accuracy but su↵ers
higher Friedman Rank. For example, on ozone dataset, NN with NTK initialization is
only 0.25% worse than polynomial kernel but their di↵erence in terms of rank is 56. It
is also interesting to see that NN with NTK initialization performs better than NN with
He initialization (38.06 vs. 40.97 in Friedman Rank and 81.02% vs. 80.88% in Average
Accuracy).

P90/P95 and PMA. This measures, for a given classifier, the fraction of datasets on
which it achieves more than 90%/95% of the maximum accuracy among all classifiers. NTK
is one of the best classifiers (ties with Gaussian kernel on P95), which shows NTK can
consistently achieve superior classification performance across a broad range of datasets.
Lastly, we consider the Percentage of the Maximum Accuracy (PMA). NTK achieves the
best average PMA followed by RF whose PMA is 0.47% below that of NTK and other

5

On 90 classic UCI
datasets

(<5000 samples)

[Processed as in
Fernando-Delgadez’14]

[A., Du, Hu, Li, Salakhutdinov, Wang, Yu ICLR’20]

(Li, Wang, Hu, Yu, Salakhutdinov, Arora, Du, Manuscript 2019]

Souped-up CNTK that rivals AlexNet on CIFAR10 (89%
accuracy; best kernel that was not trained on data)

Open: Fully
understand

generalization for
kernels !

Optimzation View Insufficient for DL

Vignette 2: Solving matrix completion via deep linear nets
(“GD is amazing even in simple models, but exactly formalizing its effect can be tricky.”)

MOVIES

U
SE

RS

“Netflix Challenge” (~2007)

“Implicit regularization in deep matrix factorization” [A., Nadav Cohen, Wei Hu, Yuping Luo, NeurIPS 2019]

Theory of Deep Learning

Matrix Completion
Unknown low rank 𝑛 × 𝑛 matrix M. Entries revealed in a random subset Ω of locations
Goal: Recover M.

[Srebro et al’05] Find matrix with best squared error and smallest nuclear norm (convex!)
X

ij2⌦

(Mij � bij)
2 + �|M |⇤

[Gunasekar et al’17] Find M as product of 2 matrices (depth 2 linear net); no regularizer!

Infinitely many solns, but empirically GD finds soln as good as nuc. norm minimization!

Conjecture (Gunasekar et al.’18): In depth 2
linear nets GD implicitly minimizes |𝑀|∗

X

ij2⌦

((W2W1)ij2⌦ � bij)
2

|𝑀|∗ = sum of singular values of M
Low rank: ”# nonzero singular values is small”

regularizer

23

[Candes, Recht’10]: This is statistically “optimal” !

Optimzation View Insufficient for DL

Deep matrix factorization (= multilayer linear nets)
[A., Cohen, Hu, Luo, NeurIPS’19]

Good news 1: Empirically, solves matrix completion
better (ie with fewer revealed entries) than Nuclear
Norm Minimization! (Also mathematical explanation..)

Figure 1: Matrix completion via gradient descent over deep matrix factorizations. Each plot shows reconstruction
errors for a matrix factorization of a different depth, applied to a different matrix completion task. Left, middle
and right columns correspond to depths 2, 3 and 4 respectively. Top row shows completion of a random rank-5
matrix with size 100⇥ 100, based on 2000 randomly chosen observed entries; bottom row shows completion of
the same matrix using 5000 randomly chosen observed entries. In each plot, y-axis stands for reconstruction
error, x-axis represents standard deviation of random initialization for gradient descent, different curves (mostly
overlapping) correspond to different learning rates for gradient descent, and error bars (barely visible) show
standard deviations of the results over multiple trials. All matrix factorizations are full-dimensional, i.e. have
hidden dimensions 100. Notice, with few observed entries (top row) factorizations of depths 3 and 4 significantly
outperform that of depth 2, whereas with more entries (bottom row) all factorizations perform well. For further
details, and a similar experiment on matrix sensing tasks, see Appendix D.

Conjecture 1. Together, our theory and experiments lead us to suspect that the implicit regularization
in matrix factorization (shallow or deep) may not be amenable to description by a simple mathematical
norm, and a detailed analysis of the dynamics in optimization may be necessary.

Section 3 carries out such an analysis, characterizing how the singular value decomposition of the
learned solution evolves during gradient descent. Evolution rates of singular values turn out to be
proportional to their size exponentiated by 2� 2/N , where N is the depth of the factorization. This
establishes a tendency towards low rank solutions, which intensifies with depth. Experiments validate
the findings, demonstrating the dynamic nature of implicit regularization in deep matrix factorization.

We believe the trajectories traversed in optimization may be key to understanding generalization in
deep learning, and hope that our work will inspire further progress along this line.

2 Can the implicit regularization be captured by norms?

In this section we investigate the possibility of extending Conjecture 1 for explaining implicit
regularization in deep matrix factorization. Given the experimental evidence in Figure 1, one may
hypothesize that gradient descent on a depth-N matrix factorization implicitly minimizes some
norm (or quasi-norm) that approximates rank, with the approximation being more accurate the
larger N is. For example, a natural candidate would be Schatten-p quasi-norm to the power of p
(0 < p  1), which for a matrix W 2 Rd,d0

is defined as: kWkpSp
:=

Pmin{d,d0}
r=1 �p

r (W), where
�1(W), . . . ,�min{d,d0}(W) are the singular values of W . For p = 1 this reduces to nuclear norm,
which by Conjecture 1 corresponds to a depth-2 factorization. As p approaches zero we obtain a
closer approximation of rank(W), which could be suitable for factorizations of higher depths.

We will focus in this section on matrix sensing — a more general problem than matrix completion.
Here, we are given m measurement matrices A1, . . . , Am, with corresponding labels y1, . . . , ym
generated by yi = hAi,W ⇤i, and our goal is to reconstruct the unknown matrix W ⇤. As in the
case of matrix completion, well-known methods, and in particular nuclear norm minimization, can
recover W ⇤ if it is low-rank, certain technical conditions are met, and sufficiently many observa-
tions are given (see [42]).

3

Depth 2 Depth 3 Depth 4

Re
co

nt
ru

ct
io

n
er

ro
r

“Ignore domain knowledge trust backprop!”

X

ij2⌦

((WNWN�1 · · ·W2W1)ij2⌦ � bij)
2

[Initialization: Small random;
Learning rate: very small)

Scale of initialization

MN

MN-1

M1

M

Optimzation View Insufficient for DL

Sketch of mathematical analysis

MN

MN-1

M1

M

1. Show that singular values and sing. vectors of end-to-end
matrix M are analytic functions of time t.

2.

Our derivation treats a setting which includes matrix completion and sensing as special cases. We
assume minimization of a general analytic loss `(·),7 overparameterized by a deep matrix factorization:

�(W1, . . . ,WN) := `(WNWN�1 · · ·W1) . (3)

We study gradient flow over the factorization:

Ẇj(t) :=
d
dtWj(t) = � @

@Wj
�(W1(t), . . . ,WN (t)) , t � 0 , j = 1, . . . , N , (4)

and in accordance with past work, assume that factors are balanced at initialization, i.e.:

W>
j+1(0)Wj+1(0) = Wj(0)W

>
j (0) , j = 1, . . . , N � 1 . (5)

Equation (5) is satisfied approximately in the common setting of near-zero initialization (it holds
exactly in the “residual” setting of identity initialization — cf. [23, 5]). The condition played an
important role in the analysis of [3], facilitating derivation of a differential equation governing
the product matrix of a linear neural network (see Lemma 3 in Appendix A). It was shown in [3]
empirically that there is an excellent match between the theoretical predictions of gradient flow with
balanced initialization, and its practical realization via gradient descent with small learning rate and
near-zero initialization. Other works (e.g. [4, 28]) later supported this match theoretically.

We note that by Section 6 in [3], for depth N � 3, the dynamics of the product matrix W (Equa-
tion (1)) cannot be exactly equivalent to gradient descent on the loss `(·) regularized by a penalty
term. This preliminary observation already hints to the possibility that the effect of depth is different
from those of standard regularization techniques.

Employing results of [3], we will characterize the evolution of singular values and singular vec-
tors for W . As a first step, we show that W admits an analytic singular value decomposition ([7, 12]):
Lemma 1. The product matrix W (t) can be expressed as:

W (t) = U(t)S(t)V >(t) , (6)

where: U(t) 2 Rd,min{d,d0}, S(t) 2 Rmin{d,d0},min{d,d0} and V (t) 2 Rd0,min{d,d0} are analytic
functions of t; and for every t, the matrices U(t) and V (t) have orthonormal columns, while S(t) is
diagonal (elements on its diagonal may be negative and may appear in any order).

Proof sketch (for complete proof see Appendix B.3). We show that W (t) is an analytic function of t
and then invoke Theorem 1 in [7].

The diagonal elements of S(t), which we denote by �1(t), . . . ,�min{d,d0}(t), are signed sin-
gular values of W (t); the columns of U(t) and V (t), denoted u1(t), . . . ,umin{d,d0}(t) and
v1(t), . . . ,vmin{d,d0}(t), are the corresponding left and right singular vectors (respectively).

With Lemma 1 in place, we are ready to characterize the evolution of singular values:
Theorem 3. The signed singular values of the product matrix W evolve by:

�̇r(t) = �N ·
�
�2
r(t)

�1�1/N ·
⌦
r`(W (t)),ur(t)v

>
r (t)

↵
, r = 1, . . . ,min{d, d0} . (7)

If the matrix factorization is non-degenerate, i.e. has depth N � 2, the singular values need not be
signed (we may assume �r(t) � 0 for all t).

Proof sketch (for complete proof see Appendix B.4). Differentiating the analytic singular value de-
composition (Equation (6)) with respect to time, multiplying from the left by U>(t) and from
the right by V (t), and using the fact that U(t) and V (t) have orthonormal columns, we obtain
�̇r(t) = u>

r (t)Ẇ (t)vr(t). Equation (7) then follows from plugging in the expression for Ẇ (t)
developed by [3] (Lemma 3 in Appendix A).

7A function f(·) is analytic on a domain D if at every x 2 D: it is infinitely differentiable; and its Taylor
series converges to it on some neighborhood of x (see [30] for further details).

7

(Interpretation: GD builds up matrix M one
singular vector at a time, not all at once.
Building up stops once gradient of loss goes to zero.)

“Rich get richer”; promotes low rank

Figure 3: Dynamics of gradient descent over deep matrix factorizations — specifically, evolution of singular
values and singular vectors of the product matrix during training for matrix completion. Top row corresponds to
the task of completing a random rank-5 matrix with size 100⇥ 100 based on 2000 randomly chosen observed
entries; bottom row corresponds to training on the MovieLens 100K dataset (completion of a 943⇥ 1682 matrix
based on 100000 given entries, cf. [24]). First (left) three columns show top singular values for, respectively,
depths 1 (no matrix factorization), 2 (shallow matrix factorization) and 3 (deep matrix factorization). Last (right)
column shows singular vectors for a depth-2 factorization, by comparing on- vs. off-diagonal entries in the
matrix U

>(t)r`(W (t))V (t) (see Corollary 1) — for each group of entries, mean of absolute values is plotted,
along with shaded area marking the standard deviation. All matrix factorizations are full-dimensional (hidden
dimensions 100 in top row plots, 943 in bottom row plots). Notice, increasing depth makes singular values
move slower when small and faster when large (in accordance with Theorem 3), which results in solutions
with effectively lower rank. Notice also that U>(t)r`(W (t))V (t) is diagonally dominant so long as there is
movement, showing that singular vectors of the product matrix align with those of the gradient (in accordance
with Corollary 1). Further details, and a similar experiment on matrix sensing, are in Appendix D.

3.1 Implicit regularization towards low rank

Figure 3 presents empirical demonstrations of our conclusions from Theorem 3 and Corollary 1. It
shows that for a non-degenerate deep matrix factorization, i.e. one with depth N � 2, under gradient
descent with small learning rate and near-zero initialization, singular values of the product matrix
are subject to an enhancement/attenuation effect as described above: they progress very slowly after
initialization, when close to zero; then, upon reaching a certain threshold, the movement of a singular
value becomes rapid, with the transition from slow to rapid movement being sharper with a deeper
factorization (larger N). In terms of singular vectors, the figure shows that those of the product matrix
indeed align with those of the gradient. Overall, the dynamics promote solutions that have a few
large singular values and many small ones, with a gap that is more extreme the deeper the matrix
factorization is. This is an implicit regularization towards low rank, which intensifies with depth.

Theoretical illustration Consider the simple case of matrix sensing with a single measurement fit
via `2 loss: `(W) = 1

2 (hA,W i � y)2, where A 2 Rd,d0
is the measurement matrix, and y 2 R the

corresponding label. Suppose we learn by running gradient flow over a depth-N matrix factorization,
i.e. over the objective �(·) defined in Equation (3). Corollary 1 states that the singular vectors of
the product matrix — {ur(t)}r and {vr(t)}r — are stationary only when they diagonalize the
gradient, meaning

�
|u>

r (t)r`(W (t))vr| : r = 1, . . . ,min{d, d0}

coincides with the set of singular
values in r`(W (t)). In our case r`(W) = (hA,W i � y)A, so stationarity of singular vectors
implies |u>

r (t)r`(W (t))vr| = |�(t)| · ⇢r, where �(t) := hA,W (t)i � y and ⇢1, . . . , ⇢min{d,d0}
are the singular values of A (in no particular order). We will assume that starting from some
time t0 singular vectors are stationary, and accordingly u>

r (t)r`(W (t))vr(t) = �(t) · er · ⇢r for
r = 1, . . . ,min{d, d0}, where e1, . . . , emin{d,d0} 2 {�1, 1}. Theorem 3 then implies that (signed)
singular values of the product matrix evolve by:

�̇r(t) = �N ·
�
�2
r(t)

�1�1/N · �(t) · er · ⇢r , 8t � t0 . (10)

9

Evolution of sing. values w/ time

Depth 2 Depth 3

(Paper presents evidence that Gunasekar et al conjecture is false)

Optimzation View Insufficient for DL

Vignette 3: Exponentially increasing learning rate works for
deep learning.

[Zhiyuan Li and A., ICLR’20]

✓(t+1) ✓(t) � ⌘r✓(`)

(⌘ = step size/”learning rate”)

𝑤 "#$ ← 𝑤 " − 𝜂 ⋅ ∇𝐿 𝑤 "

Learning rate in traditional optimization

Standard schedule: Start with some l.r.; decay over time.

(extensive literature in optimization justifying this)

Result 1 (empirical): Possible to train today’s deep architectures, while growing l.r.
exponentially (i.e., at each iteration multiply by (1 + 𝑐) for some 𝑐 > 0)

Result 2 (theory): Mathematical proof that nets produced by existing training schedules
can also be in obtained (in function space*) via exponential l.r. training schedules.

(* In all nets that use batch norm [Ioffe-Szegedy’13] or any other layer normalization scheme.)

Under review as a conference paper at ICLR 2020

1.2 PRELIMINARIES AND NOTATIONS

For batch B = {xi}Bi=1, network parameter ✓, we use f✓ to denote the network and use Lt(f✓) =
L(f✓,Bt) to denote the loss function at iteration t. When there’s no ambiguity, we also use Lt(✓)
for convenience.

We say a loss function L(✓) is scale invariant to its parameter ✓ is for any c 2 R+, L(✓) =
L(c✓). In practice, the source of scale invariance is usually different types of normalization layers,
including Batch Normalization(Ioffe & Szegedy, 2015), Group Normalization(Wu & He, 2018),
Layer Normalization(Ba et al., 2016), Instance Norm(Ulyanov et al., 2016), etc.

Implementations of SGD with Momentum/Nesterov comes with subtle variations in literature. We
adopt the variant from (Sutskever et al., 2013), also the default in PyTorch(Paszke et al., 2017). L2
regularization (a.k.a. Weight Decay) is another common trick used in deep learning. Combining
them together, we get the one of the mostly used optimization algorithms below.
Definition 1.2. [SGD with Momentum and Weight Decay] At iteration t, with randomly sampled
batch Bt, update the parameters ✓t and momentum vt as following:

✓t =✓t�1 � ⌘tvt (2)

vt =�vt�1 +r✓

✓
Lt(✓t�1) +

�t�1

2
k✓t�1k2

◆
, (3)

where ⌘t is the learning rate at epoch t, � is the momentum coefficient, and � is the factor of weight
decay. Usually, vt is initialized to be 0.

For ease of analysis, we will use the following equivalent of Definition 1.2.
✓t � ✓t�1

⌘t�1
= �

✓t�1 � ✓t�2

⌘t�2
�r✓

✓
(L(✓t�1) +

�t�1

2
k✓t�1k22

◆
, (4)

where ⌘�1 and ✓�1 must be chosen in a way such that v0 = ✓0�✓�1

⌘�1
is satisfied, e.g. when v0 = 0,

✓�1 = ✓0 and ⌘�1 could be arbitrary.

A key source of intuition is the following simple lemma about scale-invariant networks (Arora
et al., 2019). The first property ensures GD (with momentum) always increases the norm of the
weight.(See Lemma B.1 in Appendix B) and the second property says that the gradients are smaller
for parameteres with larger norm, thus stabilizing the trajectory from diverging to infinity.
Lemma 1.3 (Scale Invariance). If for any c 2 R+, L(✓) = L(c✓), then
(1). hr✓L,✓i = 0;
(2). r✓L

��
✓=✓0

= cr✓L
��
✓=c✓0

, for any c > 0

2 DERIVING EXPONENTIAL LEARNING RATE SCHEDULE

As a warm-up in Section 2.1 we show that if momentum is turned off then Fixed LR + Fixed WD
can be translated to an equivalent Exponential LR. In Section 2.2 we give a more general analysis
on the equivalence between Fixed LR + Fixed WD + Fixed Momentum Factor and Exponential
LR + Fixed Momentum Factor. While interesting, this still does completely apply to real-life deep
learning where reaching full accuracy usually requires multiple phases in training where LR is fixed
within a phase and reduced by some factor from one phase to the next. Section 2.3 shows how to
interpret such a multi-phase LR schedule + WD + Momentum as a certain multi-phase exponential
LR schedule with Momentum.

2.1 REPLACING WD BY EXPONENTIAL LR IN MOMENTUM-FREE SGD

We use notation of Section 1.2 and assume LR is fixed over different iterations, i.e. ⌘t = ⌘0, and �

(momentum) is set as 0. We also use � to denote WD factor and ✓0 to denote the initial parameters.

The intuition should be clear from Lemma 1.3, which says that shrinking parameter weights by factor
⇢ (where ⇢ < 1) amounts to making the gradient ⇢�1 times larger without changing its direction.
Thus in order to restore the ratio between original parameter and its update (LR⇥Gradient), the
easiest way would be scaling LR by ⇢

2. This suggests that scaling the parameter ✓ by ⇢ at each step
is equivalent to scaling the LR ⌘ by ⇢

�2.

3

Learning Rate

General training algorithm
for deep learning today

Momentum ℓ" regularizer (aka Weight decay)

Thm (informal): For nets w/ batch norm or layer norm, following is equivalent
to above : weight decay 0, momentum 𝛾, and LR schedule 𝜂" = 𝜂%𝛼&'"&$
where 𝛼 is nonzero root of

Under review as a conference paper at ICLR 2020

Theorem 1.1 (Main, Informal). SGD on a scale-invariant objective with initial learning rate ⌘,
weight decay factor �, and momentum � is equivalent to SGD where at iteration t, the learning
rate ⌘̃t in the new exponential learning rate schedule is defined as ⌘̃t = ↵

�2t�1
⌘ without weight

decay(�̃ = 0) where ↵ is a non-zero root of equation

x
2 � (1 + � � �⌘)x+ � = 0, (1)

Specifically, when momentum � = 0, the above schedule can be simplified as ⌘̃t = (1��⌘)�2t�1
⌘.

The above theorem requires that the product of learning rate and weight decay factor, �⌘, is small
compared to 1 � �, which is almost always satisfied in practice. The rigorous and most general
version of above theorem is Theorem 2.13, which deals with adaptive learning rate schedule, mo-
mentum and weight decay.

Such an exponential increase in learning rate seems absurd at first sight and to the best of our
knowledge, no deep learning success has been reported using such an idea before. It does highlight
the above-mentioned viewpoint that in deep learning, optimization and regularization are not easily
separated. Of course, the exponent trumps the effect of initial lr very fast, which serves as another
explanation of the standard wisdom that initial lr is unimportant when training with BN.

Note that it is customary in BN to switch to a lower learning rate upon reaching a plateau in the
validation loss. According to the analysis in the above theorem, this corresponds to an exponential
growth with a smaller exponent, except for a transient effect when a correction term is needed for
the two processes to be equivalent (see discussion around Theorem 2.12).

Thus the final training algorithm is roughly as follows: Start from a convenient learning rate like
0.1, and grow it at an exponential rate with a suitable exponent. When validation loss plateaus,
switch to an exponential growth of lr with a lower exponent. Repeat the procedure until the training
loss saturates.

In Section 3, we demonstrate on a toy example how weight decay and normalization are inseparably
involved in the optimization process. With either weight decay or normalization alone, SGD will
achieve zero training error. But with both turned on, SGD fails to converge to global minimum.

In Section 5, we experimentally verify our theoretical findings on CNNs and ResNets. We also
construct better exponential LR schedules by incorporating the Cosine learning rate schedule, which
opens the possibility of even more general theory of rate schedule tuning towards better performance.

1.1 RELATED WORK

There have been other theoretical analyses of training models with scale-invariance. (Cho & Lee,
2017) proposed to run Riemmanian gradient descent on Grassmann manifold G(1, n) since the
weight matrix is scaling invariant to the loss function. observed that the effective stepsize is pro-
portional to ⌘w

kwtk2 . (Arora et al., 2019) show the gradient is always perpendicular to the current
parameter vector which has the effect that norm of each scale invariant parameter group increases
monotonically, which has an auto-tuning effect. (Wu et al., 2018) proposes a new adaptive learning
rate schedule motivated by scale-invariance property of Weight Normalization.

Previous work for understanding Batch Normalization. (Santurkar et al., 2018) suggested that
the success of BNhas does not derive from reduction in Internal Covariate Shift, but by making
landscape smoother. (Kohler et al., 2018) essentially shows linear model with BN could achieve
exponential convergence rate assuming gaussian inputs, but their analysis is for a variant of GD
with an inner optimization loop rather than GD itself. (Bjorck et al., 2018) observe that the higher
learning rates enabled by BN empirically improves generalization. (Arora et al., 2019) prove that
with certain mild assumption, (S)GD with BN finds approximate first order stationary point with any
fixed learning rate. None of the above analyses incorporated weight decay, but (Zhang et al., 2019;
Hoffer et al., 2018; van Laarhoven, 2017) argued qualitatively that weight decay makes parameters
have smaller norms, and thus the effective learning rate, ⌘w

kwtk2 is larger. None of the above anal-
yses deals with momentum (rigorously). zhiyuan: We have a contradictory conclusion with (van
Laarhoven, 2017), which only gave a claim without proof...

2

(proof uses: a trajectory-based analysis + scale-invariance created due to batch-norm)

𝑓𝜽 = 𝑓)𝜽, ∀𝑐 > 0

but didn’t have a closed form theoretical analysis like ours. None of the above analyses deals with
momentum rigorously.

1.2 PRELIMINARIES AND NOTATIONS

For batch B = {xi}Bi=1, network parameter ✓, we use f✓ to denote the network and use Lt(f✓) =
L(f✓,Bt) to denote the loss function at iteration t. When there’s no ambiguity, we also use Lt(✓)
for convenience.

We say a loss function L(✓) is scale invariant to its parameter ✓ is for any c 2 R+, L(✓) =
L(c✓). In practice, the source of scale invariance is usually different types of normalization layers,
including Batch Normalization(Ioffe & Szegedy, 2015), Group Normalization(Wu & He, 2018),
Layer Normalization(Ba et al., 2016), Instance Norm(Ulyanov et al., 2016), etc.

Implementations of SGD with Momentum/Nesterov comes with subtle variations in literature. We
adopt the variant from (Sutskever et al., 2013), also the default in PyTorch(Paszke et al., 2017). L2
regularization (a.k.a. Weight Decay) is another common trick used in deep learning. Combining
them together, we get the one of the mostly used optimization algorithms below.
Definition 1.2. [SGD with Momentum and Weight Decay] At iteration t, with randomly sampled
batch Bt, update the parameters ✓t and momentum vt as following:

✓t =✓t�1 � ⌘t�1vt (2)

vt =�vt�1 +r✓

✓
Lt(✓t�1) +

�t�1

2
k✓t�1k2

◆
, (3)

where ⌘t is the learning rate at epoch t, � is the momentum coefficient, and � is the factor of weight
decay. Usually, vt is initialized to be 0.

For ease of analysis, we will use the following equivalent of Definition 1.2.
✓t � ✓t�1

⌘t�1
= �

✓t�1 � ✓t�2

⌘t�2
�r✓

✓
(L(✓t�1) +

�t�1

2
k✓t�1k22

◆
, (4)

where ⌘�1 and ✓�1 must be chosen in a way such that v0 = ✓0�✓�1

⌘�1
is satisfied, e.g. when v0 = 0,

✓�1 = ✓0 and ⌘�1 could be arbitrary.

A key source of intuition is the following simple lemma about scale-invariant networks (Arora
et al., 2019). The first property ensures GD (with momentum) always increases the norm of the
weight.(See Lemma B.1 in Appendix B) and the second property says that the gradients are smaller
for parameteres with larger norm, thus stabilizing the trajectory from diverging to infinity.
Lemma 1.3 (Scale Invariance). If for any c 2 R+, L(✓) = L(c✓), then
(1). hr✓L,✓i = 0;
(2). r✓L

��
✓=✓0

= cr✓L
��
✓=c✓0

, for any c > 0

2 DERIVING EXPONENTIAL LEARNING RATE SCHEDULE

As a warm-up in Section 2.1 we show that if momentum is turned off then Fixed LR + Fixed WD
can be translated to an equivalent Exponential LR. In Section 2.2 we give a more general analysis
on the equivalence between Fixed LR + Fixed WD + Fixed Momentum Factor and Exponential
LR + Fixed Momentum Factor. While interesting, this still does completely apply to real-life deep
learning where reaching full accuracy usually requires multiple phases in training where LR is fixed
within a phase and reduced by some factor from one phase to the next. Section 2.3 shows how to
interpret such a multi-phase LR schedule + WD + Momentum as a certain multi-phase exponential
LR schedule with Momentum.

2.1 REPLACING WD BY EXPONENTIAL LR IN MOMENTUM-FREE SGD

We use notation of Section 1.2 and assume LR is fixed over iterations, i.e. ⌘t = ⌘0, and � (momen-
tum factor) is set as 0. We also use � to denote WD factor and ✓0 to denote the initial parameters.

The intuition should be clear from Lemma 2.1, which says that shrinking parameter weights by factor
⇢ (where ⇢ < 1) amounts to making the gradient ⇢�1 times larger without changing its direction.

3

(𝝆 = 𝟏 − 𝝀𝜼)

=
𝚷𝟐
𝝆!𝟏 𝐆𝐃𝐭 𝚷𝟐

𝝆 ∘ 𝚷𝟏
𝝆

𝜽𝟏

𝜽𝟎 = 𝜽𝟎:

𝜽𝟐 𝜽𝟑

𝜽𝟏:

𝜽𝟐: 𝜽𝟑:Proof:

𝚷𝟏
𝝆!𝟏 ∘ 𝚷𝟐

𝝆!𝟐

𝚷𝟐
𝝆!𝟏

𝚷𝟐
𝝆!𝟏

Theorem: GD + WD + constant LR= GD + Exp LR.
𝚷𝟏
𝝆!𝒕 ∘ 𝚷𝟐

𝝆!𝟐𝒕 ∘ 𝑮𝑫𝒕&𝟏
𝝆 ∘ ⋯ ∘ 𝑮𝑫𝟎

𝝆 = 𝚷𝟐
𝝆!𝟏 ∘ 𝐆𝐃𝐭&𝟏 ∘ 𝚷𝟐

𝝆!𝟐 ∘ ⋯ ∘ 𝐆𝐃𝟏 ∘ 𝚷𝟐
𝝆!𝟐𝐆𝐃𝟎 ∘ 𝚷𝟐

𝝆!𝟏

=

Optimzation View Insufficient for DL

Vignette 4: How to allow deep learning on your data without
revealing your data.

Instance-hiding schemes for private distributed deep learning [Huang, Song, Li and A., ICML’20]

Preamble: Mixup data augmentation [Zhang et al 18]

Idea : teach deep models to behave linearly on training data

● Images are vectors in [-1,1]d , labels are 1-hot vectors in {0,1}c, where c = # of classes

● λ ∈% (0,1), mixed image: λx1 + (1-λ)x2, mixed label: λy1 + (1-λ)y2

(0, 1, 0, 0)
Cat

(0, 0, 0, 1)
Car

(0, 0.6, 0, 0.4)
Cat Car

0.6 x + 0.4
x

=

Training with only these mixed data points
gives better final accuracy on normal images.

Takeaway: Training
data is malleable!

Federated learning with private data

Hospital 1

Hospital 2

Hospital 3

Central server Model

Multiple parties with private data (e.g. hospitals) want to
collaboratively train a deep model.

Federated learning [McMahan et al 16]: Server shares
current model with the parties. They share model
updates (gradients) using their data.

Hospital 1

Hospital 2

Hospital 3

Central server

Model

Model

Model

Model

Multiple parties with private data (e.g. hospitals)
want to collaboratively train a deep model

Federated learning with private data

Multiple parties with private data (e.g. hospitals) want to
collaboratively train a deep model.

Federated learning [McMahan et al 16]: Server shares
current model with the parties. They share model
updates (gradients) using their data.

Hospital 1

Hospital 2

Hospital 3

Central server

Model

Model

Model

Model

Approach 1: Differential privacy (each party
shares model gradients computed using their data, but
after adding noise (“DP”).
Pros: Provable Privacy guarantees
Cons: Large accuracy drop due to added noise.

Approach 2: Secure Multiparty Computation using cryptography.
(Yao’82, BGW’87)
Pros: Strongest privacy guarantees.
Cons: High computational overhead; infeasible for modern deep
learning.

Private Distributed Learning
Federated learning [McMahan et al 16]: Server shares
current model with the parties. They share model
updates (gradients) using their data.

Theory of Deep Learning 35

Needed: An encryption method for data
that does not interfere with deep learning

(Usual crypto lifts arithmetic operations to
finite fields or lattices)

Take inspiration from Mixup??

Inspiration : Simple addition on datapoints can
help to obscure them.

● k-VECTOR SUBSET SUM [Bhattacharyya et al

11]:

○ A set of public N vectors v1, ···, vN∈
ℝd

○ Picks k secret indices i1, ···, ik ∈
{1,..N} and releases ∑jvij

○ Exponential Time Hypothesis →
finding i1, ···, ik requires ≥ Nk/2 time
[Abboud and Lewi 13]
■ k = 4 is already pretty hard

0.6 x + 0.4 x =

(0, 1, 0, 0)
Cat

flip pixel signs
randomly

(0, 1, 0, 0)
Cat

To encrypt private
:

Private
train set

(0, 1, 0, 0)
Cat

Public dataset
(large)

Mix with images
from public dataset

one-time private key
that randomly flips sign

1. Public → off-the-shelf; no
special preparation
2. Large → gives more security
(remember Vector k-sum)···

InstaHide: Idea

InstaHide: Full description (think of k as 4)

flip pixel signs
randomly

Mix k/2 training images with k/2 public images, followed by pixelwise random sign flip

(0, 1, 0, 0)
Cat

(0, 0, 0, 1)
Car (𝟎, 𝝀𝟏, 𝟎, 𝝀𝟐)

Cat Car

𝜆$ × +
𝜆' ×

+
𝜆0 ×

+
𝜆1 ×

Note: Secret key for encryption = (Choice of images used for mixing, random sign mask)
Never reused during training

Conjecture: Extracting any information about training images requires > min 𝑁
!
" , 2$ time

(N = size of public dataset, d= # pixels)

7/10/2018 Theoretically understanding deep learning

• Understanding why and how deep learning works is a
new frontier for mathematics.

• Attempts to “open the black box” leads to new insights and new methods.
(e.g., exponentially increasing learning rates, InstaHide)

• It will be a fun ride!

Concluding thoughts

In der Mathematik gibt
es kein ignorabimus

D. HilbertTHANK YOU!!

Blog: www.offconvex.org, Twitter: @prfsanjeevarora

http://www.offconvex.org/

