Opening the black box of deep learning

(+ take-aways for Al)

Sanjeev Arora

[ B PRINCETON
UNIVERSITY

http://www.cs.princeton.edu/~arora/

Group website: unsupervised.princeton.edu

Blog: www.offconvex.org _ _
Grant support: NSF, Simons Foundation, ONR,
Twitter: @prfsanjeevarora DARPA/SRC, AWS



http://www.cs.princeton.edu/~arora/
http://www.cs.princeton.edu/~arora/

ARTIFICIAL
INTELLIGENCE

1

MACHINE
LEARNING

DEEP
LEARNING

1950’s 1960's 1970’s 1980's 1990’s 2000’s 2010’s .
Source: Nvidia
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Four control knobs of deep learning

[Archltecture ) LTralnlng Algorlthmj
@ @ Very different from
old Al (e.g.,Lisp code)!

[Tralnlng Objectlvej tTraining Dataset ]




Today’s main point

[ Architecture

= Tralnlng Algorlthmj

(This simplistic, “black-box” )
view of deep learning may
not suffice for getting us
to where we want to go in

(Tralnlng Objective | | Training Dataset j ﬁé)((li.I:I.éfIZ;f:es rlg)nlng very




Basic deep learning paradigm

£ (w) : training objective/loss
(w = parameter vector)
Gradient Descent (GD):

with @O _ 7 vV wW) Stuart Russell: Will we choose the right objective for
Al before it destroys us all?

e.d.,

Stuart Russell, author of a textbook on Al, and the popular volum
Human Compatible, says humanity needs to get its act together
and think about what the right objectives are to make sure
machines more intelligent than ourselves don't annihilate the
human race.

Usual view: Objective = score
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Objective doesn’t fix functionality

£ (w) : training objective/loss Reality: N ™,
(w = parameter vector) A () nonconvex; has \
Gradient Descent (GD): multiple optima
w*D W@ _ v (w/ different properties) 7> j
ST~

Usual view: Objective = score  Training algorithm selects a solution..
, w (we have little idea how)




Why worry about multiple optima? Hasn't
stopped progress so far.

Answer: For classification tasks (e.g., ImageNet Challenge) trained net
can be tested on held-out data to check model’'s goodness.

But Al seeks flexible learners that can handle new situations...
(We'll return to this point a few times...)
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Part 1: Architecture + dataset + objective don't suffice to
determine behavior of trained deep model.

(Need to look at dynamics of training algorithm)

(Coming up: Vignettes from theory + Takeaways)
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Vignette: Mathematical understanding of GD on Linear Nets

(“Even though objective looks nonsensical, GD picks meaningful solution;
Better than classical hand-designed algorithm.)

Optimzation View Insufficient for DL



MOVIES

Matrix Completion Problem

Unknown low rank n X n matrix M.
. . . Bob 4 > o 4
Entries revealed in a random subset €2 of locations v
OC  Alice ? 5 4 5
Goal: Recover M. 7
) Joe 5 5 B )
Sam 5 3 ) >

[Srebro et al'05] Find matrix with best least-squares fit and smallest nuclear norm
(convex!)

e N U e L
ijE€Q = urrog

regularizer [Candes, Recht’10]: This is statistically “optimal” !




Linear nets for matrix completion

[Gunasekar et al’17] Find M as product of 2 matrices
(depth 2 linear net); no regularization or rank constraint!

D (W, W), — by))?

1,jE€Q

Infinitely many solns exist; most nonsensical.

Empirical finding: GD finds soln as good as nuclear norm minimization!

W,

Wi




Linear nets for matrix completion (contd)

IVIN
[A., Cohen, Luo, Wu'19] Find M as product of N matrices
(depth-N linear net); no regularization! My,
M
D, (Wy-Wo W) = b))y’
1,jE€Q
Ml -

Now GD finds soln better than nuclear norm minimization!

Mathematical analysis of GD trajectory in [A., Cohen, Luo, Wu ICML’19].
Complete characterization (~“Greedy low rank learning”) in [Li, Luo, Lyu ICLR’21]



I\/lN
Mathematical analysis of gradient flow
- ] IVI =
(nontrivial!) b
1. Show that singular values and sing. vectors of end-to-end
matrix M are analytic functions of time t. M, |
2. Theorem 3. The signed singular values of the product matrix W evolve by.
a.(t) = =N - (trr';'(/g] LN (VW) u, ('l]v:[fj:;

“Rich get richer”; promotes low rank Depth 2 Depth 3

(Interpretation: “Goal” of GD = Make singular vectors of M
align with those of V(K(W(t))). Sing. directions grow
one by one, not all at once.)
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Vignette: Training of infinitely wide* Deep Nets
(“Architecture looks vacuous, but GD picks a meaningful solution out of
infinitely many possibilities”)

(* Motivations: “Thermodynamic limit” + “Gaussian Process View of DL” )

Optimzation View Insufficient for DL



NO

Motivation: AOverfitting mystery of deep learning

Rule of thumb: Overcomplicated models Overparametrized net

(e.g. when # parameters >> # datapoints) (capable of fitting

overfit and do not “generalize” random data [Zhang et é
to explaining new data. al.17]) outperform

smaller nets.

Theory of Deep Learning 16



)

f(©, x) Dataset: UCI Primary Tumor
(multiclass; 17-dimensional input, # training samples= 339)

Want to train fully connected 5-layer net on it. Infinitely wide!

| Means: Keep input and output layer fixed, but allow width of inner layers — oo

(initialize with suitably-scaled Gaussians so expected node value is equal at all layers)

Too expressive! Will overfit to training data.
(Arbitrarily wide 2-layer nets can represent every finite function, so
# of zero-loss solutions — o)

Plus, infeasible to train!

Test accuracy: 51.5

(Random Forest: 48.5, Gaussian Kernel: 48.4)

Optimzation View Insufficient for DL



Details (fully connected nets)

) . W: [
(8, x) f(0,z) —wi. [o (W@), o 0<W<L1>.,, 2y (W%))) : Gaussian

A dy, dr_q Initialization

T

1

 Square Loss: L(60) = 5 Z(f(H,fDq:) —y;)”
i=1

« Dynamics of Gradient Descent on L( -), (shorthand: u,(t) = f(G)(t) xl-)
w(t) = H(@®)(u() — y) Ou;(t) Ou,(t

~__~ Higlt) = < W) oW

\/

Xi Thm ([Jacot et al.;’18] + followup papers): As width - oo, V¢t H(t) > H*

Implication: GD trajectory — ¢, regression w.r.t. kernel H*
(classic algorithm, but a new kernel: Neural Tangent Kernel)

(NB: “Infinitely wide nets” definable in multiple ways; not all reduce to NTK regression.)

Theory of Deep Learning 18



Previous slide unpacked : Kernel regression/SVM reminder

Kernel trick: |, regression possible if /
N

~

can compute < @(x,), ®(x,) > forany eural Tangent Kernel H™:

given input pair x;, X,
Each coordinate of ®(x) corresponds to

“Reproducing parameter w in the net.
Kernel D(x)
Hilbert Space” : :
t \Correspondmg entry is d(output)/ow att = O/
Input x To do regression wrt H™ only need algorithm to

compute < CI)(xl), C[)(xz) > forany

(e.g., polynomial kernel, Gaussian kernel,..) , , ,
given Iinput pair Xy, X,

Optimzation View Insufficient for DL



Dynamic programming algorithm to compute H™ (also convnets) and thus |, regression.

GPU friendly!
Main idea: Treat infinitely wide layers as representing a continuous distribution of values.

Empirical finding: Pretty good performance in small-data setting. Competitive with
old champions like Random Forests... [“Harnessing the power of infinitely wide nets for small-
data tasks”..]

Open: Tight analysis of generalization of kernel regression.

(“To understand deep learning we need to understanding kernel learning”, [Belkin et al’18])

Open: analysis of what other algorithms (SGD, Adam, BN etc) do with infinitely wide nets

Exact computation via infinitely wide nets (with convolution + global avg. pooling)
Applied to CIFAR10. [A., Du, Hu, Li, Salakhutdinov, Wang, NeurlPS 2019]

Optimzation View Insufficient for DL



(“Duelling Als™ MIT Tech Review)

Part 2: Mode Collapse in Generative Adversarial Nets (GANSs)

A\

(i)Training Objective may deliver less than you expect
(if) Caution warranted in multi-objective/multiplayer settings..

Optimzation View Insufficient for DL



Deep generative models
(e.g., Variational AutoEncoders) S~

Usual training:
Max E,[log p(x)]
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Generative Adversarial Nets (GANSs)
[Goodfellow et al. 2014]

Motivations :

(1) Avoid loglikelihood objective;
it favors outputting fuzzy images.

(2) Instead of loglikelihood, use power of
discriminative deep learning (i.e., classification)
to improve the generative model.



~ “Difference in expected output on
real vs synthetic images”

Generatlve Adversarlal Ne Wasserstein GAN [Arjovsky et al’17]
[Goodfellow et al. 2014] ok

D) — E[Dy(Gu(R)].

Real (1) or min max EUCNDreaz

Fake (0) wEU vEV

------------ e Discriminator trained to output 1 on

_________ P real inputs, and O on synthetic inputs.
e Generator trained to produce

D., ~ Dsyn‘rh synthetic outputs that make
ﬁé:gﬁﬁ: C, discriminator output high values.
Smll N Y
S L

EMA~YE Y VERE
HE~Os0na s
EEESEYOENE
EANENSRERETR
ﬁgu‘uﬂﬂz -
JEGREESOSE0

[Excellent resource: [Goodfellow’s survey]

= trainable parameters of Generator net
v = trainable parameters of Discriminator net



Generative Adversarial Nets (GANS)  coodteliow et al. 2014

Recl (1) o minmax Eovp,,.,[Dy(@)] — By[Du(Gu(h))]
Fake (0) uclU veV
e Discriminator trained to output 1 on
D """ real inputs, and O on synthetic inputs.
| e Generator trained to produce
‘D synthetic outputs that make
D,y * synth discriminator output high values.
rea
EEET - EEEZs C,
CHATEH«ESS £
Sml NS ¥ EE
FETHSERE P
PR A Generator “wins” if objective = 0
EEENESpaRE enerator WII‘.IS. it o |ec. |ve. .
g;gg:gggg - and further training of discriminator
dRaEBEsae doesn’t help. (“Equilibrium.”) ‘
u= trainable parameters of Generator 1
v = trainable parameters of Discriminator O -



What spoils a GANs trainer’s day: Mode Collapse

e Since discriminator only learns from a few samples, it may be
unable to teach generator to produce distribution D, with

sufficiently large diversity

e (many ad hoc qualitative checks for mode collapse..)

New Insight from theory: problem not with # of training samples,
but size (“capacity”) of the discriminator!



Thm [A., Ge, Liang, Ma, Zhang ICML'17] : If discriminator size =
N, then 3 generator that generates a distribution supported on
I O(Nlog N) images, and still wins against all possible
43 discriminators.
—

=g (tweaking objectives or increasing training set doesn’t help..)
: %

(NB: D LA

eql Presumably has infinite support..)

= Small discriminators inherently incapable of detecting “mode collapse.”

Pf sketch: Consider generator that learns to produce
O(N logN) random real images. Consider “all possible
discriminators of size N” (suffices to consider “&-net” ).
Use concentration bounds to argue that none of them

can distinguish D | from this low-support distribution.

rea



~ How to check support size of
o O generator’s distribution??

‘\\ /
N
|

pr——— .

Theory suggests GANs training objective not guaranteed to
avoid mode-collapse.

Does this happen during real life training€¢@



Empirically detecting mode collapse (Birthday Paradox Test)
(A, Risteski, Zhang ICLR’18)

The Birthday

Paradox
an ov

" If you put 23 random people in a room,
chance is > 1/2 that two of them share
~a birthday. >

e

Suppose a distribution is supported on N images. |

Then Pr[sample of size YN has a duplicate image]
> y,

Birthday paradox test* [A, Risteski, Zhang] : If a sample of size s has near-duplicate
images with prob. > 1/2, then distribution has only s2 distinct images.

Implementation: Draw sample of size s; use heuristic method to flag possible
near-duplicates. Rely on human in the loop to verify duplicates.



Estimated support size from well-known GANs

E1E3 B
63 BRY
EAE3 BARD

CelebA (faces):
200k training images

DC-GAN [Radford et al’15]: Duplicates in
500 samples. Support size (500)2 = 250K

BiGAN [Donohue et al’'17]
and ALl (Dumoulin et al’17]:
Support size = (1000)2 = 1M

(Similar results on CIFAR10)

Followup: [Santurkar et al’17] Different test; confirms lack of diversity.

[Bauetal’19] Confirms continued lack of diversity in more recent models.

7/10/2018 Theoret ically understan: ding deep learn ing



a?
" @J} formalization
\ of “learnt skills”?

Part 3: Why does training on Task A help later
with solving Task B?

(e.g., major in math, later do well in law school)

AAAIl Plenary 2021: Arora



Recall: Canonical ML framework

Datapoints come from a distribution &
S = Training Datapoints

Train model parameters w by minimizing E,¢[¢, (W)]

Learning works if £ g0 (W)] = E, o[£, (W]
(i.e. test loss is similar to training loss)

If test task # training task, must look for
“learned skills” inside trained model w¥*.




Ex1: Language models

“Rob went to the cafe

Training of language models like GPT-3 involves and ordered a .7

“fill in the blank” tasks (uses “log likelihood”)

fxent({p_ls}> =F,, [—log<p.|s(w)>] -

GPT-3’s internal representation of text f( . ) turn out to be =W

useful (with no further fine-tuning) for other language tasks!!
Is this something special about Pr{latte] =0.15
* language modeling itself,

* current deep architectures, or Pridanish]= 0.1
* training algorithms?

Pr[dog]= 0.00001

Next few slides: [Mathematical exploration of why Language Models
help solve Downstream Tasks: Saunshi, Malladi, A. ICLR’21]




Classification tasks often can be cast as next-word prediction

Ex: (Sentiment Classification) Given movie review, classify as +ve or -ve

Sentiment ought to be
Review + “| think the movie was...” apparent from p|S(W)

L1

for w= “gOOd, terrible,”

s “amazing’, “meh”, etc.!

Natural task: Solvable via linear classifier on the vector of probabilities pTS(w)

(Empirical finding: Suffices for classifier to look at p.|(w) for 10-20 words. Part of “natural” defn!)



Relating text embedding to probabilities

Context: s

f(s) € R4

Language Model
softmax 03
> on > 0.2
®cR™ | T f(s 0.05
f( ) 0.0001

\ J

xen

1st order optimality condition: For fixed ®, f™ that
minimizes £, satisfies ®p .., = <I>pf’<ls

& = (Fixed) Matrix of word embeddings

(i.e., Only guaranteed to learn p7}_up to
|s

“projection” in d-dimensional
subspace spanned by ®

(Claim: If @ respects synonym structure (i.e. synonyms A

have similar embeddings) then natural task continue to

be solvable via pf‘[s that satisfy subspace constraint

. /)




Better language model = Better classification

fg<{q)pf(s)}> < 7 + @(\/E>

Logistic regression |aSs for task
using d-dimensional @p ;.

Measure of naturalness
of the task

Suboptimality of LM wrt likelihood

€= fxem<{pf(s)}> - fxem<{l’f*<s>}>

NB: Assumes (i) natural task (ii) @ respects synonym structure
(iii) 1st order optimality condition of language model objective




Ex 2: Self-supervised learning: QuickThought

[Logeswaran & Lee, ICLR’18] “like word2vec..”
[For image tasks, x, x*

Using text corpus (eg Wikipedia) train deep representation are frames from same
function f to minimize video [Wang-Gupta’l 5].

D [1og (1 n ef(w)Tf(x_)—f(w)Tf(f))}

+ . —
X, X ' are adjacent sentences, X~ is random sentence from corpus

(“Make adjacent sentences have high inner product, while
random pours of senfences have low inner product.”) «

~= 3 Many cIaSS|ﬁcat|on tasks -
7:7 ~ solvable via linear C|aSS|ferS fﬁf A theoretical analysis of contrastive

— When Sentence S |S representedunsupew|sed representatlon Iearr“ng,
— = A, Khandeparker, Khodak, Plevrakis, Saunshi

o asfls) o omug

7/10/2018 Y Theory of Unsupervised Learning



Part 4 (speculative): Flexible & Reliable Al agents
may need new design principles

AAAIl Plenary 2021: Arora



FROM SYSTEM 1
.. DEEP LEARNING
“J.__ TOSYSTEM2

, (=) =2 DEEP LEARNING

hio

Bottom up visual information Y O S H U A B EN G l O
: :::::g Gradient
;» No 'Pc\ssillg Gradient A O NeurlPS'2019 Keynote
Active RIM
= i O December 11th, 2019, Vancouver BC

RECURRENT INDEPENDENT MECHANISMS

Anirudh Goyal', Alex Lamb', Jordan Hoffmann'>%>*, Shagun Sodhani’-*, Sergey Levine®
Yoshua Bengio" ™, Bernhard Schélkopf * ™

(Rough summary): Society of agents who choose (using attention mechanism)
to compete or collaborate. Credit assignment via suitable gradients
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Lo FROM SYSTEM 1

S— DEEP LEARNING

TO SYSTEM 2
cif” “22° DEEP LEARNING

YOSHUA BENGIO

A Q NeurlPS'2019 Keynote
(> December 11th, 2019, Vancouver BC
RECURRENT INDEPENDENT MECHANISMS
Operating way beyond

Anirudh Goyal', Alex Lamb', Jordan Hoffmann'>%>*, Shagun Sodhani’-*, Sergey Levine® P
Yashua Bengio® **, Bernhard Schiilkopf > ™ traditional ML framework

(multiobjective, no fixed

training distribution,..) >

(Rough summary): Society of agents who choose (using attention mechanism)
to compete or collaborate. Credit assignment via suitable gradients




Need for new theory and principles

Recall: ML relies on avg. performance on data
(training / test) drawn from a fixed distribution.

Many Proposed Alternatives! (Variants on
“distributions on distributions”, e.g. Meta-Learning,
Bayesian frameworks)

Possibly insufficient to capture richness of
everyday interactions? (Low-probability
events an important test of flexible agents?) Independerﬁ:émples

from fixed distribution

(NB: Conceivable that huge datasets can allow a way around this...)

Y AAl Plenary 2021: Arora



In conclusion

« We're starting to open black box of deep learning

 In some (admittedly stylized) settings properties of
trained models proven to arise from complicated interaction
of architecture, objective, training algorithm and dataset.

* Formal understanding could be crucial for design of flexible, reliable
Al agents.

http://www.cs.princeton.edu/~arora/

Group website: unsupervised.princeton.edu

THANK YOU!

Blog: www.offconvex.org
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