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Programming based/ 
Human-Designed

Fitting model to data
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Four control knobs of  deep learning

Architecture

Training Objective

Training Algorithm

Training Dataset

Very different from 
old AI (e.g.,Lisp code)!
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Today’s main point

Architecture

Training Objective

Training Algorithm

Training Dataset

This simplistic, “black-box”  
view of deep learning may  
not  suffice  for getting us  
to where we want to go in  
AI (i.e., for designing very  
flexible learners)
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Basic deep learning paradigm

 training objective/loss  
( parameter vector) 
Gradient Descent (GD): 
 

ℓ(w) :
w =

w(t+1) ← w(t) − η∇ℓ(w(t))

Usual view: Objective ≃ score 

ZDNet Feb 13 2020 

e.g.,
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Objective doesn’t fix functionality

 training objective/loss  
( parameter vector) 
Gradient Descent (GD): 
 

ℓ(w) :
w =

w(t+1) ← w(t) − η∇ℓ(w(t))

Usual view: Objective ≃ score Training algorithm selects a solution.. 
                                      (we have little idea how) 

Reality:  
 nonconvex; has  

multiple optima  
(w/ different properties)

ℓ()
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Why worry about multiple optima? Hasn’t  
stopped progress so far. 

Answer: For classification tasks (e.g., ImageNet Challenge)  trained net  
can be tested on held-out data to check model’s goodness. 
 
But AI seeks flexible learners that can handle new situations… 
(We’ll return to this point a few times…) 
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Part 1: Architecture + dataset + objective don’t suffice to  
determine behavior of  trained deep model. 
 
(Need to look at  dynamics of training algorithm)

(Coming up: Vignettes from theory + Takeaways)



Optimzation	View	Insufficient	for	DL

Vignette:  Mathematical understanding of GD on Linear Nets  
 
(“Even	though	objective	looks	nonsensical,	GD	picks	meaningful	solution; 
		Better	than	classical	hand-designed	algorithm.)
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MOVIES

U
SE
RS

Matrix Completion Problem

Unknown	low	rank	 	matrix	M.	 
Entries	revealed	in	a	random	subset	 		of		locations	
Goal:	Recover	M.	

𝑛  ×  𝑛
Ω

[Srebro et al’05]  Find matrix with best least-squares fit and smallest nuclear norm 
(convex!)   

	=	sum	of	singular	values	of	M 
			(Convex	surrogate	for	low	rank)
|𝑀 |∗

regularizer [Candes,	Recht’10]:	This	is	statistically	“optimal”	!
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Linear nets for matrix completion

M
[Gunasekar et al’17]  Find M as product of 2 matrices  
(depth 2 linear net); no regularization or rank constraint!

Infinitely many solns exist; most nonsensical. 
Empirical finding: GD finds soln  as good as nuclear norm minimization!    

∑
i,j∈Ω

((W2W1)ij − bij))2

W2

W1
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Linear nets for matrix completion (contd)

[A., Cohen, Luo, Wu’19]  Find M as  product of N matrices  
(depth-N linear net); no regularization!

Now GD finds soln  better than nuclear norm minimization!    

∑
i,j∈Ω

((WN⋯W2W1)ij − bij))2

MN

MN-1

M1

M

Mathematical analysis of GD trajectory in [A., Cohen, Luo, Wu ICML’19]. 
Complete characterization ( “Greedy low rank learning”) in [Li, Luo, Lyu ICLR’21] ≈



Optimzation	View	Insufficient	for	DL

Mathematical analysis of gradient flow  
(nontrivial!)

MN

MN-1

M1

M

1. Show	that	singular	values	and	sing.	vectors	of	end-to-end  
matrix	M	are	analytic	functions	of	time	t.	 

2. 	

(Interpretation:	“Goal”	of	GD	=	Make	singular	vectors	of	M	 
align		with	those	of	 .	Sing.	directions	grow	  
one	by	one,	not	all	at	once.)	

∇(ℓ(𝑊 (𝑡)))

“Rich	get	richer”;	promotes	low	rank

Evolution	of	sing.	values	w/	time

Depth	2 Depth	3



Optimzation	View	Insufficient	for	DL

Vignette:	Training	of	infinitely	wide*	Deep	Nets 
(“Architecture	looks	vacuous,	but	GD	picks	a	meaningful	solution	out	of	 
infinitely	many	possibilities”)

(*	Motivations:	“Thermodynamic	limit”		+	“Gaussian	Process	View	of	DL”	)



Theory	of	Deep	Learning

Motivation:  Overfitting mystery of deep learning

Rule	of	thumb:	Overcomplicated	models	 
(e.g.	when	#	parameters	>>	#	datapoints)  
overfit	and	do	not	“generalize”  
	to	explaining	new	data.

	Overparametrized	nets	
(capable	of	fitting	
random	data	[Zhang	et	
al.17])	outperform			
smaller		nets.

NO

16



Optimzation	View	Insufficient	for	DL

Want	to		train	fully	connected	5-layer	net		on		it.

Means:	Keep	input	and	output	layer	fixed,	but	allow	width	of	inner	layers		 	
(initialize	with	suitably-scaled		Gaussians	so		expected	node	value	is	equal	at	all	layers)

→ ∞

Dataset:	UCI	Primary	Tumor		  
(multiclass;	17-dimensional	input,		#	training	samples=		339)	 

Too	expressive!	Will	overfit	to	training	data.	
(Arbitrarily	wide		2-layer	nets	can	represent	every	finite	function,	so		
#	of	zero-loss	solutions	  
Plus,	infeasible	to	train!

→ ∞)

Test	accuracy:	51.5		 

(Random	Forest:	48.5,	Gaussian	Kernel:	48.4)

xi

f(𝚹,	xi)

𝛉

Infinitely	wide!



Theory	of	Deep	Learning

Details (fully connected nets)

• Square	Loss: 

• Dynamics	of	Gradient	Descent	on	 ,		(shorthand:	  𝐿( ⋅ ) 𝑢𝑖(𝑡) = f(Θ(𝑡) 𝑥𝑖)
�̇�(𝑡) = 𝐻(𝑡)(𝑢(𝑡) − 𝑦)

18

Thm	([Jacot	et	al.,’18]	+	followup	papers):	As	  
                                         	Implication:	GD	trajectory	 	regression	w.r.t.	kernel		 		  
	 	 	 (classic	algorithm,	but	a	new	kernel:	Neural	Tangent	Kernel)

𝑤𝑖𝑑𝑡h → ∞,     ∀𝑡  𝐻(𝑡) → 𝐻∗	
→ ℓ2 𝐻∗

(NB:	“Infinitely	wide	nets”	definable	in	multiple	ways;	not	all	reduce	to	NTK	regression.)

xi

f(𝚹,	xi)

𝛉

W:	Gaussian		
Initialization



Optimzation	View	Insufficient	for	DL

Previous slide unpacked : Kernel regression/SVM reminder

Φ(𝑥)

Input	𝑥

(e.g.,	polynomial	kernel,	Gaussian	kernel,..)	

“Reproducing 
Kernel	  

Hilbert	Space”

Kernel	trick:		l2	regression	possible	if	  
can	compute	 	for	any 
given	input	pair		

< Φ(𝑥1),  Φ(𝑥2) >   
𝑥1,  𝑥2

 
Neural	Tangent	Kernel	 : 

	Each	coordinate	of	 	corresponds	to	
parameter	 	in	the	net.	
 
Corresponding	entry	is		 	at	 	

𝐻∗

Φ(𝑥)
𝑤

𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)/𝜕𝑤 𝑡 = 0

To	do	regression	wrt	 	only	need	algorithm	to	 
compute	 	for	any 
given	input	pair		

𝐻∗

< Φ(𝑥1),  Φ(𝑥2) >   
𝑥1,  𝑥2



Optimzation	View	Insufficient	for	DL

• Dynamic	programming	algorithm	to	compute	 	(also	convnets)	and	thus		l2	regression.	  
GPU	friendly!	 
Main	idea:	Treat	infinitely	wide	layers	as	representing	a	continuous	distribution	of	values. 

• 	Empirical	finding:		Pretty	good	performance	in	small-data	setting.	Competitive	with	 
old	champions	like	Random	Forests…	[“Harnessing	the	power	of	infinitely	wide	nets	for	small-
data	tasks”..] 

• 	Open:	Tight	analysis	of	generalization	of	kernel	regression.		
						(“To	understand	deep	learning	we	need	to	understanding	kernel	learning”,	[Belkin	et	al’18]) 

• 	Open:	analysis	of	what	other	algorithms	(SGD,	Adam,	BN	etc)	do	with	infinitely	wide	nets

𝐻∗

Exact computation via infinitely wide nets (with convolution + global avg. pooling)  
Applied to CIFAR10. [A., Du, Hu, Li, Salakhutdinov, Wang, NeurIPS 2019]



Optimzation	View	Insufficient	for	DL

Part	2:	Mode	Collapse	in	Generative	Adversarial	Nets	(GANs)

(i)Training Objective may deliver less than you expect 
   (ii) Caution warranted in multi-objective/multiplayer settings..

(“Duelling AIs” MIT Tech Review)



Theoretically understanding deep learning

Deep generative models  
(e.g.,  Variational AutoEncoders)

7/10/2018

Code Z Image X

Usual training:  
Max Ex[log p(x)] 
 
(“log likelihood”)

N(O, I)

Implicit assumption: Dreal  generatable by deep net of reasonable size.     

Dreal
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Generative Adversarial Nets (GANs)  
[Goodfellow et al. 2014]

Motivations :   
 
(1) Avoid loglikelihood objective; 
it favors outputting fuzzy images. 
 
  (2) Instead of loglikelihood, use power of 
discriminative deep learning (i.e., classification) 
 to improve the generative model.



Generative Adversarial Nets (GANs)  
[Goodfellow et al. 2014]

Real (1) or 
Fake (0)

Dv

Gu

u= trainable parameters of Generator net 
v = trainable parameters of Discriminator net

Dreal
Dsynth

[Excellent resource: [Goodfellow’s survey]

• Discriminator trained  to output 1 on  
real inputs, and 0 on synthetic inputs. 

• Generator trained to produce 
synthetic outputs that make  
discriminator output high values.  

 
“Difference in expected output on 
real vs synthetic images” 
Wasserstein GAN [Arjovsky et al’17] 
** 



Generative Adversarial Nets (GANs)  [Goodfellow et al. 2014]

Real (1) or 
Fake (0)

Dv

Gu

u= trainable parameters of Generator  
v = trainable parameters of Discriminator 

Dreal
Dsynth

• Discriminator trained  to output 1 on  
real inputs, and 0 on synthetic inputs. 

• Generator trained to produce 
synthetic outputs that make  
discriminator output high values.  

Generator “wins” if objective ≈ 0 
and further training of  discriminator 
doesn’t  help.   (“Equilibrium.”)



Theoretically understanding deep learning

What spoils a GANs trainer’s day: Mode Collapse

●Since discriminator only learns from a few samples, it may be 
unable to teach generator to produce distribution Dsynth  with 
sufficiently large diversity 

●(many ad hoc qualitative checks for mode collapse..)

7/10/2018

New Insight from theory: problem  not with # of training samples, 
but size (“capacity”) of the discriminator! 



Thm [A., Ge, Liang, Ma, Zhang ICML’17]  : If discriminator size = 
N, then ∃ generator that generates a distribution supported on 
O(Nlog N)  images, and still wins against all possible 
discriminators.  
(tweaking objectives or increasing training set doesn’t help..) 
 

 
 

à Small discriminators inherently incapable of detecting “mode collapse.”

(NB: Dreal  presumably has infinite support..)

Pf sketch: Consider generator that learns to produce  
O(N logN) random real images. Consider “all possible  
discriminators of size N” (suffices to consider “𝛆-net” ).  
Use concentration bounds to argue that none of them 
can distinguish Dreal  from this low-support distribution.



Theory suggests GANs training objective not guaranteed to  
avoid mode-collapse.

Does this happen during real life training???

How to check support size of  
generator’s distribution??



If you put 23 random people in a room, 
chance is > 1/2 that two of them share 
a birthday.

Suppose a distribution is supported on N images.  
Then Pr[sample of size  √N  has a duplicate image]  
> ½. 

Birthday paradox test* [A, Risteski, Zhang]  : If  a sample of size s has near-duplicate 
 images  with prob. > 1/2, then distribution has only s2 distinct images.

Empirically detecting mode collapse (Birthday Paradox Test)  
     (A,  Risteski, Zhang ICLR’18)

Implementation: Draw sample of size s; use heuristic method to flag possible 
near-duplicates. Rely on human in the loop to verify duplicates.  



Theoretically understanding deep learning

Estimated support size from well-known GANs

7/10/2018

DC-GAN [Radford et al’15]: Duplicates in 
500 samples. Support size (500)2 = 250K 

BiGAN [Donohue et al’17] 
and ALI (Dumoulin et al’17]:  
 Support size = (1000)2 = 1M

(Similar results on CIFAR10)
CelebA (faces): 
200k training images

Followup: [Santurkar et al’17] Different test; confirms lack of diversity. 
 
[Bauetal’19] Confirms continued lack of diversity in more recent models.  
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Part 3: Why does training on Task A help later  
           with solving Task B? 

(e.g., major in math, later do well in law school) 

      formal izat ion  
      of “ learnt ski l ls”?
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Recall: Canonical ML framework

Datapoints come from a distribution  
S = Training Datapoints

𝒟

Train model parameters  by minimizing  w Ex∈S[ℓx(w)]

Learning works if    
(i.e. test loss is similar to training loss)  

Ex∈𝒟[ℓx(w)] ≈ Ex∈S[ℓx(w]

I f  test task  training task, must look for  
“learned skil ls” inside trained model .

≠
w*
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Training of language models like GPT-3 involves  
“fill in the blank” tasks (uses “log likelihood”)

“Rob went to the cafe  
and ordered a  …”

Is this something special about  
* language modeling itself, 
* current deep architectures, or   
* training algorithms? 

Pr[latte] =0.15 

Pr[danish]= 0.1 

Pr[dog]= 0.00001 

GPT-3’s internal representation of text  turn out to be  
useful (with no further fine-tuning) for other language tasks!!  

f( . )

ℓ𝑥𝑒𝑛𝑡({𝑝⋅|𝑠}) = 𝔼𝑠,𝑤[−log(𝑝⋅|𝑠(𝑤))] 

Ex1: Language models 

Next few slides: [Mathematical exploration of why Language Models  
help solve Downstream Tasks:  Saunshi, Malladi, A. ICLR’21]
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Classification tasks often can be cast as next-word prediction

Ex: (Sentiment Classification) Given movie review, classify as +ve or -ve

Review +  “ I think the movie was…”

s

Sentiment ought to be  
apparent from   
for w= “good,” “terrible,” 
“amazing”, “meh”, etc.!

p⋅|s(w)

Natural task: Solvable via linear classifier on the vector  of probabilities p*⋅|s(w)

(Empirical finding: Suffices for classifier to look at  for 10-20 words. Part of “natural” defn!)p⋅|s(w)
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Relating text embedding to probabilities

Language	Model	

Context:		𝑠
 

0.3…
0.2
0.05
0.0001

 𝒇(𝒔) ∈ ℝ𝒅 softmax	
on		

𝚽⊤𝒇(s)𝚽 ∈ ℝ𝒅×𝑽

1st	order	optimality	condition:	For	fixed	 ,	 	that	
minimizes	 	satisfies	

Φ 𝑓∗

ℓ𝑥𝑒𝑛𝑡 Φ𝑝𝑓∗(𝑠) = Φ𝑝∗
⋅|𝑠

(i.e.,	Only	guaranteed	to	learn	 	up	to	
“projection”		in	 -dimensional	

subspace	spanned	by	

𝑝∗
⋅|𝑠

𝑑
𝚽

 = (Fixed) Matrix of word embeddingsΦ

Claim: If  respects synonym structure (i.e. synonyms 
have similar embeddings) then natural task  continue to  
be solvable via  that satisfy subspace constraint

Φ

𝑝∗
⋅|𝑠
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    ℓ𝒯({Φ𝑝𝑓(𝑠)})     ≤    𝜏    +     𝒪( 𝜖)

Better language model  Better classification⟹

Logistic	regression	loss	for	task	
using	 -dimensional	𝑑 Φ𝑝𝑓(𝑠) Measure	of	naturalness	

of	the	task

Suboptimality	of	LM	wrt	likelihood	

𝜖 = ℓ𝑥𝑒𝑛𝑡({𝑝𝑓(𝑠)}) − ℓ𝑥𝑒𝑛𝑡({𝑝𝑓∗(𝑠)})
NB: Assumes (i) natural task (ii)  respects synonym structure  
(iii) 1st order optimality condition of language model objective

Φ



Theory of Unsupervised Learning7/10/2018

Ex 2: Self-supervised learning: QuickThought   
 [Logeswaran & Lee, ICLR’18] “like word2vec..”

Using text corpus (eg Wikipedia) train deep representation  
function f to minimize

 are adjacent sentences,  is random sentence from corpus𝑥, 𝑥+ 𝑥−

(“Make adjacent sentences have high inner product, while 
random pairs of sentences have low inner product.”) 

Many classification tasks 
solvable via linear classifers 

when sentence  is represented 
as  

s
f(s)

[For image tasks,   
are frames from same  
video [Wang-Gupta’15]…]

x, x+

[A theoretical analysis of contrastive  
unsupervised representation learning, 
A., Khandeparker, Khodak, Plevrakis, Saunshi 
ICML’19] 
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Part 4 (speculative): Flexible & Reliable AI agents  
may need new design principles 
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(Rough summary): Society of agents who choose (using attention mechanism) 
to compete or collaborate. Credit assignment via suitable gradients   
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Operating way beyond   
traditional ML framework  
(multiobjective, no fixed  
training distribution,..)  

(Rough summary): Society of agents who choose (using attention mechanism) 
to compete or collaborate. Credit assignment via suitable gradients   
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 Need for new theory and principles

Recall: ML relies on avg. performance on data  
(training / test)  drawn from a fixed distribution. 

Many Proposed Alternatives! (Variants on  
“distributions on distributions”, e.g. Meta-Learning, 
Bayesian frameworks)

Possibly insufficient to capture richness of  
everyday interactions? (Low-probability  
events an important test of flexible agents?)

Independent samples  

AI/ 
ML

Independent samples 
from fixed distribution

(NB: Conceivable that huge datasets can allow a way around this…)  
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In conclusion

• We’re starting to open black box of deep learning 

• In some (admittedly stylized) settings properties of  
trained models proven to arise from complicated interaction  
of architecture, objective, training algorithm and dataset. 

• Formal understanding could be crucial for design of flexible, reliable 
AI agents.

THANK YOU!
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